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1 IntrodutionLet A and T be real symmetri positive de�nite n-by-n matries. We onsiderthe problem of omputing the smallest eigenvalue �1 and the orrespondingeigenvetor u1 of matrix A by preonditioned iterative methods, where T willplay the role of the preonditioner, e.g., Knyazev (2000). Suh eigensolversare matrix{free, i.e. no A, neither the preonditioner T need to be available asmatries, and are designed to solve eÆiently and aurately extremely largeand ill{onditioned eigenvalue problems.The trivial hoie T = I, see Kantorovih (1952) and Hestenes and Karush(1951), su�ers from poor onvergene for ill-onditioned matries, f. Brad-bury and Flether (1966); Feng and Owen (1996); Rodrigue (1973); Yang(1991); Knyazev and Skorokhodov (1991). Preonditioned gradient methodswith a general preonditioner T for symmetri eigenvalue problem have beenstudied, e.g., by Samokish (1958), Petryshyn (1968), Godunov et al. (1976),D'yakonov and Orekhov (1980); D'yakonov (1983), Knyazev (1987, 1998) aswell as in the monograph D'yakonov (1996) and in a reent survey Knyazev(2000), whih inlude extensive bibliography. Suh preonditioned eigensolvershave been used in pratie, e.g., for band struture alulations Dobson (1999);Dobson et al. (2000), thin elasti strutures Ovthinnikov and Xanthis (2000),and a real-spae ab initio method for eletroni struture alulations in termsof nonorthogonal orbitals de�ned on a grid Fattebert and Bernhol (2000).In the latter paper, a multigrid preonditioner is employed to improve thesteepest desent diretions used in the iterative minimization of the energyfuntional.Let us also mention here briey a number of very reent artiles on preondi-tioned eigensolvers, even though they are not as losely related to the subjetof the present paper as the papers ited in the previous paragraph. Oliveira(1999) obtains asymptoti onvergene rate estimate of the generalized David-son method similar to that by Samokish (1958) for the preonditioned steepestdesent. Sadkane and Sidje (1999) disuss the blok Davidson method withdeation. Smit and Paardekooper (1999) study inexat inverse and Rayleighquotient iterations, using a perturbation tehnique somewhat omparable withthat used in Neymeyr (2001a,b), but expliitly based on the error redutionrate of the inner iterations. Basermann (2000) applies a blok inomplete LUdeomposition for preonditioning in the Jaobi-Davidson method Sleijpenand Van der Vorst (1996); Bai et al. (2000). Ng (2000) uses for Toeplitz ma-tries the preonditioned Lanzos method suggested and analyzed in Sott(1981); Knyazev (1987); Morgan and Sott (1993), see also Bai et al. (2000).Let k � kA denote the A-based vetor norm k � kA = (�; A�) as well as the or-responding indued operator norm. For our theoretial estimates, we assume2



that the preonditioner T approximates the matrix A, suh thatkI � T�1AkA � ; 0 �  < 1: (1)In general, as both matries A and T are symmetri positive de�nite, thefollowing always holds:Æ0(u; Tu) � (u;Au) � Æ1(u; Tu); 0 < Æ0 � Æ1: (2)The ratio Æ1=Æ0 an be viewed as the spetral ondition number �(T�1A) ofthe preonditioned matrix T�1A and measures how well the preonditioner Tapproximates, up to a saling, the matrix A. A smaller ratio Æ1=Æ0 typiallyensures faster onvergene. For mesh problems, matries A and T are alledspetrally equivalent if the ratio is bounded from above uniformly in the meshsize parameter, see D'yakonov (1996).Assumption (1) leads to (2) with Æ0 = 1 �  and Æ1 = 1 + . Vie versa,assumption (2) leads to (1), but only if T is properly saled. Namely, if Tsatis�es (2) then optimally saled 2T=(Æ0 + Æ1) substituting T satis�es (1)with = �(T�1A)� 1�(T�1A) + 1 : (3)Our onvergene estimates in the present paper for methods with optimalsaling will be based on assumption (2) and will use  given by (3). We notethat some preonditioned eigensolvers, e.g., the steepest desent method wewill disuss later, impliitly provide the optimal saling of the preonditioner.In the rest of the paper, we will assume (1), unless expliitly stated otherwise,in order to be onsistent with the previous papers Neymeyr (2001a,b).It is well-known that the minimum of the Rayleigh quotient�(u) = (u;Au)(u; u) ; where u 2 Rn ; u 6= 0; (4)is �1 and the orresponding stationary point is the eigenvetor u1 of A. Gradi-ent preonditioned eigensolvers generate a sequene of nonzero vetors, whihminimizes the Rayleigh quotient, using its gradient, omputed in the T -basedsalar produt (�; �)T = (�; T �), see, e.g., D'yakonov (1996):rT�(u) = 2(u; u)T T�1(Au� �(u)u): (5)3



The simplest method in this lass, a two{term gradient minimization, an bewritten asu(i+1) = u(i) � !(i)T�1 �Au(i) � �(u(i))u(i)� ; (6)where !(i) is a salar step size. We will analyze the error redution of one stepof the method,u0 = u� !T�1(Au� �u); (7)where we disard upper indexes and denote u0 = u(i+1), u = u(i), ! = !(i), and� = �(u(i)).We will onsider two hoies of ! here. The �rst ase is an a priori �xed hoie! = 1. This hoie is evidently a�eted by a preonditioner saling.The seond hoie orresponds to the well-known, e.g., D'yakonov (1996);Knyazev (2000), preonditioned steepest desent for the Rayleigh quotient,where ! is hosen to minimize the Rayleigh quotient on the two-dimensionalsubspae spanfu; T�1(Au��u)g by means of the Rayleigh{Ritz method. Thisleads to a 2-by-2 generalized eigenvalue problem that an be solved expliitlyby using formulas for roots of the orresponding harateristi equation, whihis in this ase quadrati. We emphasize again that suh hoie of ! impliitlydetermines the optimal preonditioner saling onstant; thus, (3) an be usedin onvergene rate estimates in this ase.Preonditioned steepest desent is an obvious way to aelerate the onver-gene of the basi preonditioned eigensolver (7) with ! = 1. There are sev-eral pratially more eÆient algorithms, e.g., the reent suessive eigenvaluerelaxation method of Ovthinnikov and Xanthis (2001), and preonditionedonjugate gradient algorithms for minimizing the Rayleigh quotient, usingan approximate inverse preonditioner, see a reent paper Bergamashi et al.(2000) and referenes there.The most promising preonditioned eigensolver is the loally optimal blokpreonditioned onjugate gradient (LOBPCG) method suggested and ana-lyzed in Knyazev (1991, 1998, 2000, 2001). In LOBPCG for omputing the�rst eigenpair, the new iterate is determined by the Rayleigh{Ritz method ona three-dimensional subspae, whih inludes the previous iterate in additionto the urrent iterate and the preonditioned residual of the two-dimensionaltrial subspae of the steepest desent method. The LOBPCG onverges manytimes faster than the steepest desent in numerial tests, and is argued inKnyazev (2001) to be pratially the optimal method on the whole lass ofpreonditioned eigensolvers. However, no simple omprehensive onvergene4



theory of the LOBPCG, explaining its apparent optimality, is yet known. Thereason is that deriving sharp onvergene estimates is hallenging even forsimplest preonditioned eigensolvers, suh as that desribed by (7).While an apparently sharp asymptoti onvergene rate estimate for the pre-onditioned steepest desent method appeared in the very �rst paper Samokish(1958), a sharp non-asymptoti onvergene rate estimate is not yet knowndespite of major e�orts over the deades; see Knyazev (1998) for the reviewand referenes. For a simpler method, namely, (7) with ! = 1, a sharp non-asymptoti onvergene rate estimate was proved only reently, in Neymeyr(2001a,b). There, Neymeyr interpreted a preonditioned gradient method witha �xed step size as a perturbation of a well known inverse iteration method,in suh a way that the assoiated system of linear equations was solved ap-proximately by using a preonditioner. To highlight this, the method (7) with! = 1 was alled the Preonditioned INVerse ITeration (PINVIT). A simplegeometri interpretation of the method was disovered that provided a basisfor derivation of sharp onvergene estimates Neymeyr (2001b).The estimate of Neymeyr (2001a,b) is sharp, but too umbersome for a hu-man being. In the present paper, we disover and prove a muh shorter andmore elegant, but still sharp, onvergene rate estimate for the same method.The new estimate also holds for a generalized symmetri de�nite eigenvalueproblem. It is simple enough to stimulate a searh for a more straightforwardproof tehnique that might �nally lead to onsiderable progress in theory ofpratially important methods, suh as LOBPCG Knyazev (2001).There are several preonditioned eigensolvers, similar to lassial subspae it-erations, for omputing an invariant subspae spanned by a group of eigenve-tors orresponding to several smallest eigenvalues of A; see; e.g., MCormikand Noe (1977); Longsine and MCormik (1980); Bramble et al. (1996);Knyazev (2000); Zhang et al. (1999) and, for trae minimization methods,see Bai et al. (2000); Sameh and Tong (2000) and referenes there.In Neymeyr (2000), the sharp onvergene rate estimate of Neymeyr (2001a,b)for single-vetor preonditioned solver is generalized to over similar subspaeiterations. A sharp simpli�ation of the estimate of Neymeyr (2000) is sug-gested in Knyazev (2001), but the proof is skethy and not omplete. In thepresent paper, we �ll these gaps in the arguments of Knyazev (2001).The paper is organized as follows. In Setion 2, we derive a new simple andsharp onvergene estimate for the PINVIT. Furthermore, we derive an upperestimate for the onvergene of preonditioned steepest desent. We extendthese results to generalized symmetri de�nite eigenproblems in Setion 3. InSetion 4, we present similar onvergene estimates for preonditioned sub-spae iterations. Numerial results are given in Setion 5.5



2 Preonditioned inverse iterationAording to formula (1.5) of Theorem 1.1 in Neymeyr (2001b), the sharpestimate from above for the Rayleigh quotient of u0, omputed by (7) with! = 1 is the following lengthy and, therefore, somewhat unreadable result: if� = �(u) 2 [�k; �k+1[ then�0 = �(u0) � �k;k+1(�; ); (8)�k;k+1(�; ) =��k�k+1(�k + �k+1 � �)2�2(�k+1 � �)(�� �k)(��k+1 + ��k � �2k � �2k+1)�2q�k�k+1(�� �k)(�k+1 � �) (9)q�k�k+1 + (1� 2)(�� �k)(�k+1 � �)��(�k + �k+1 � �)(��k+1 + ��k � �2k � �k�k+1 � �2k+1)��1 ;see the theorem below for the exat meaning of notations.The estimate (8) is sharp in a sense that a preonditioner T and a vetoru an be found suh that the bound for the Rayleigh quotient is attained.Here, we present a onise onvergene rate estimate for PINVIT, written indi�erent terms, whih is also sharp, but in a di�erent somewhat weaker sense;see Remark 2 below.Theorem 1 Let u 2 Rn and let � = �(u) 2 [�1; �n[ be its Rayleigh quotient,where �1 � : : : � �n are the eigenvalues of A. The preonditioner is assumedto satisfy (1) for some  2 [0; 1[. If � = �(u) 2 [�k; �k+1[ then it holds for theRayleigh quotient �0 = �(u0) with u0 omputed by (7) with ! = 1 that either�0 < �k (unless k = 1), or �0 2 [�k; �[. In the latter ase,�0 � �k�k+1 � �0 � (q (; �k; �k+1))2 �� �k�k+1 � �; (10)whereq (; �k; �k+1) =  + (1� ) �k�k+1 = 1� (1� ) 1� �k�k+1! (11)is the onvergene fator. 6



PROOF. Evidently, having the estimate (8), we only need to show that themaximum for all � 2 [�k; �k+1[ of the funtion�k;k+1(�; )� �k�k+1 � �k;k+1(�; ) �k+1 � ��� �k ; (12)where �k;k+1(�; ) is expliitly given in (9), is exatly (q (; �k; �k+1))2. It iseasy to hek that the funtion takes this value, when � = �k, however we arenot able to �nd a simple proof that it is the maximal value, using the expres-sion for �k;k+1(�; ) from (9). Instead, we will use a di�erent, though equiva-lent, representation of �k;k+1(�; ) from the Theorem 1.1 in Neymeyr (2001b),whih provides the \mini{dimensional analysis" in S = spanfuk; uk+1g, seealso Theorem 5.1 in Neymeyr (2001a). We adopt the notations of the lattertheorem and set for onveniene k = 1 and k + 1 = 2, without a loss ofgenerality.It is shown in Neymeyr (2001a) that the set of all iterates E, when one �xesthe vetor u and hooses all preonditioners T satisfying (1), is a ball, in theA{based salar produt. In the two-dimensional subspae S, the intersetionS\E is a disk. The quantity r will denote the radius of the disk, and y and xwill be Cartesian oordinates of its enter with respet to a Cartesian systemof oordinates, given by the A{orthonormal eigenvetors u1 and u2 of A, whihspan S, orrespondingly. Neymeyr (2001a) obtains the following formulas:x = vuut �(�� �1)�2(�2 � �1) ; y = vuut �(�2 � �)�1(�2 � �1) ; r = s(�� �1)(�2 � �)�1�2 :Aording to Neymeyr (2001a), the unique maximum of the Rayleigh quotienton the whole E is atually attained on the dis S\E and is given by �1;2(�; )de�ned by formula (5.6) of Neymeyr (2001a), reprodued here:�1;2(�; ) = �2 + �2�2=�1 + �2=�2 ; (13)where (�; �) = (ql2 � �2; xl2 + rylx2 + y2 )are the oordinates of the point of the maximum and l is its Eulidean norm;moreover, l = qx2 + y2 � r2:Formula (9) is then derived from (13) in Neymeyr (2001a).For our present proof, the geometri meaning of quantities is not at all im-portant. The only important fat is that (13) provides a formula for �1;2(�; )7



for known x; y and r, whih, in their turn, are expliitly given as funtionsof ; �; �1, and �2 only. The rest of the proof is nothing but simple, thoughsomewhat tedious, algebrai manipulations.Diretly from (13), we have�12 � �1�2 � �12 = �2�1�2�2 = �1�2 (xl + ry)2(x2 + y2)2 � (xl + ry)2 ;where in denominator(x2 + y2)2 � (xl + ry)2 = (yl � xr)2:Here, yl � xr is positive beause of y > r.Expliit expressions for x and y give�2 � ��� �1 = y2�1x2�2 :Therefore, the onvergene fator q, de�ned by�12 � �1�2 � �12 �2 � ��� �1 = �21y2�22x2 (xl + ry)2(yl � rx)2 =: q2;is equal toq = �1y(xl + ry)�2x(yl � rx) = �1�2 1 + yrxl1� xryl > 0: (14)Diret omputation shows thatyrxl = (�2 � �) �2�1!1=2 z�1=2and xryl = (�� �1) �1�2!1=2 z�1=2with z = 2(�1 � �)(�2 � �) + �(�1 + �2 � �) > 0. Hene,q[�℄ = r�1�2 z1=2 + (�2 � �)r�2�1 z1=2 � (�� �1) : (15)We note again that value of q[�℄ squared in (15) must be the same as that ofthe expression (12) with �1;2(�; ) given by (9) | it is just written in a moreivilized way. 8



We now want to eliminate dependene of the onvergene fator q on �, by�nding a sharp upper bound, independent of �. For that, let us showq0(�) < 0;whih is equivalent toq�1�2(�2 � �1) < (�2 � �1)z1=2 + ( dd�z1=2) f�2(�2 � �) + �1(�� �1)g :Taking the square of both sides and inserting z and dd�z1=2, we observe afterfatorization that the last inequality holds provided that the following quantity(1�2)(�2��1)2(�1+�2��)2 [(1 + )�1 + (1� )�2℄ [(1� )�1 + (1 + )�2℄is positive, whih it trivially is under our assumptions 0 �  < 1 and 0 <�1 � � < �2. Thus, q[�℄ takes its largest value, when � = �1:q[�1℄ =  + (1� )�1�2 = �1�2 +   1� �1�2! = 1� (1� ) 1� �1�2! :2Remark 2 It follows diretly from the proof of the theorem above that the trueonvergene fator in the estimate (10) may depend on �, but this dependeneis not deisive. We eliminate � to make the estimate muh shorter.Thus, our upper bound (11) of the onvergene fator does not depend on �and is sharp, as a funtion of the deisive quantities ; �k; �k+1 only. Theestimate (10) is also asymptotially sharp, when �! �k, as it then turns intothe sharp estimate (8).Remark 3 The preonditioned steepest desent for the Rayleigh quotient when! is omputed to minimize the Rayleigh quotient on the two-dimensional sub-spae spanfu; T�1(Au� �u)g, evidently produes a smaller value �0 omparedto that when ! is hosen a priori. Thus, the onvergene rate estimate (10)with the onvergene fator (11) holds for the preonditioned steepest desentmethod, too. Moreover, we an now assume (2) instead of (1) and use (3) aswe already disussed in the Introdution, whih leads to1�  = 2�(T�1A) + 1 ; (16)This estimate for the preonditioned steepest desent is not apparently sharp asan be seen by omparing it with the asymptoti estimate by Samokish (1958).9



3 Generalized symmetri de�nite eigenvalue problemsWe now onsider a generalized symmetri de�nite eigenvalue problem of theform (A��B)u = 0 with real symmetri n-by-n matries A and B, assumingthat A is positive de�nite. That desribes a regular matrix penil A��B witha disrete spetrum (set of eigenvalues �). It is well known that suh general-ized eigenvalue problem has all real eigenvalues �i and orresponding (right)eigenvetors ui, satisfying (A � �iB)ui = 0, an be hosen orthogonal in thefollowing sense: (ui; Auj) = (ui; Buj) = 0; i 6= j: In some appliations, the ma-trix B is simply the identity, B = I, and then we have the standard symmetrieigenvalue problem with matrix A, whih has n real positive eigenvalues0 < �min = �1 � �2 � : : : � �n = �max:We already disussed the ase B = I in the previous setion.In general, when B 6= I; the penil A� �B has n real, some possibly in�nite,eigenvalues. If B is nonsingular, all eigenvalues are �nite. If B is positive semi-de�nite, some eigenvalues are in�nite, all other eigenvalues are positive, andwe onsider the problem of omputing the smallestm eigenvalues of the penilA� �B. When B is inde�nite, it is onvenient to onsider the penil �A�Bwith eigenvalues � = 1�; �min = �n � � � � � �1 = �max;where we want to ompute the largest m eigenvalues, �1; : : : �m, and orre-sponding eigenvetors.We �rst onsider the ase B > 0, when we may still use �'s. We naturallyrede�ne the Rayleigh quotient (4) to�(u) = (u;Au)(u;Bu); where u 2 Rn ; u 6= 0; (17)and replae method (7) with the following:u0 = u� !T�1(Au� �(u)Bu); (18)still assuming that the preonditioner T approximates A aording to (1).A di�erent popular approah to deal with a generalized eigenvalue problem,e.g., utilized in the ARPACK based MATLAB ode EIGS.m, relies on ex-pliit fatorizations of the matrix B, A, or their linear ombination. It annot,10



of ourse, be used in a matrix-free environment, when all matries are onlyavailable as matrix-vetor-multiply (MVM) funtions.The method (18) is not new. It was previously studied, e.g., by D'yakonov andOrekhov (1980); D'yakonov (1983, 1996). Here, we easily derive a new sharponvergene estimate for it, using our previous result for B = I.Theorem 4 Let B > 0. Let u 2 Rn and let � = �(u) 2 [�1; �n[ be its Rayleighquotient, where �1 � : : : � �n are the eigenvalues of B�1A. The preonditioneris assumed to satisfy (1) for some  2 [0; 1[. If � = �(u) 2 [�k; �k+1[, thenit holds for the Rayleigh quotient �0 = �(u0) with u0 omputed by (18) with! = 1 that either �0 < �k (unless k = 1), or �0 2 [�k; �[. In the latter ase,the onvergene estimate (10) holds with the onvergene fator (11).PROOF. As B > 0, the bilinear form (�; �)B = (�; B�) desribes a salarprodut, in whih matries B�1T and B�1A are symmetri positive de�nite.Let us make all the following substitutions at one:(�; �)B ) (�; �); B�1A) A; B�1T ) T:Then, the formula (18) turns into (7) and the generalized eigenvalue problemfor the penil A� �B beomes a standard eigenvalue problem for the matrixB�1A. Thus, we an use Theorem 4 that gives us the present theorem afterthe bak substitution to the original terms of the present setion. 2Remarks 2 and 3 hold with evident modi�ations for B > 0.To over the general ase, when B may not be de�nite, we replae �'s with�'s by swithing from the penil A � �B to the penil B � �A. We rede�nethe Rayleigh quotient (17) to�(u) = (u;Bu)(u;Au) ; where u 2 Rn ; u 6= 0; (19)and replae method (18) with the following:u0 = u+ !T�1(Bu� �(u)Au); (20)still assuming that the preonditioner T approximates A aording to (1). Weare now interested in the largest eigenvalue �1 of the matrix A�1B.The method (18) was previously suggested, e.g., in Knyazev (1986) and repro-dued in D'yakonov (1996). Now, we obtain a new sharp onvergene estimatefor it, using our previous theorem. 11



Theorem 5 Let u 2 Rn and let � = �(u) 2℄�n; �1℄ be its Rayleigh quotient,where �1 � : : : � �n = �min are the eigenvalues of A�1B. The preonditioneris assumed to satisfy (1) for some  2 [0; 1[. If � = �(u) 2℄�k+1; �k℄ then itholds for the Rayleigh quotient �0 = �(u0) with u0 omputed by (20) with! = 1�� �minthat either �0 > �k (unless k = 1), or �0 2℄�; �k℄. In the latter ase, theonvergene estimate�k � �0�0 � �k+1 � q2 �k � ��� �k+1 ; (21)holds with the onvergene fatorq = 1� (1� )�j � �j+1�j � �min : (22)PROOF. We �rst rewrite the estimate of the previous theorem for B > 0 interms of �'s:�k � �0�0 � �k+1 � q2 �k � ��� �k+1 ; q = 1� (1� )�j � �j+1�j : (23)Here we use the fat that�k � �0�0 � �k+1 �� �k+1�k � � = �0 � �k�k+1 � �0 �k+1 � ��� �kand thatq = 1� (1� ) 1� �k�k+1! = 1� (1� )�k � �k+1�k : (24)Now, we are ready to deal with a general symmetri B. We use a trik, sug-gested in Knyazev (1986) and reprodued in D'yakonov (1996). Namely, wesubstitute our atual matrix B, whih is not neessarily positive de�nite withpositive de�nite matrix B� = B��A > 0, where a salar � < �min, and applythe previous estimate (23) to the penil B����A with eigenvalues �� = ���.This gives (23), but with q = 1� (1� )�k � �k+1�k � � :12



Finally, we realize that the method itself is invariant with respet to �, exeptfor the salar shift that must be now hosen as! = 1�� �:Moreover, everything depends ontinuously on � < �min, so we an take thelimit � = �min as well. This proves estimate (21) with q given by (22) 2Remarks 2 and 3 for general B turn into the following.Remark 6 The onvergene fator (22) is sharp, as a funtion of the deisivequantities ; �k��k+1; �k��min only. The estimate (21) is also asymptotiallysharp, when �! �k, as it then turns into a sharp estimate.Remark 7 The preonditioned steepest asent for the Rayleigh quotient (19)when ! in (20) is omputed to maximize the Rayleigh quotient on the two-dimensional subspae spanfu; T�1(Bu � �Au)g, evidently produes a largervalue �0 ompare to that when ! is hosen a priori. Thus, the onvergenerate estimate (21) with the onvergene fator (22) holds for the preonditionedsteepest asent method, too. Moreover, we an now assume (2) instead of (1)and use (16).Remark 8 In the loally optimal preonditioned onjugate gradient method(4.2) of Knyazev (2001), the trial subspae is enlarged ompare to that of thepreonditioned steepest asent method of Remark 7. Thus, the onvergene rateestimate (21) with q given by (22) holds for the former method, too, assuming(2) and taking (16). Our preonditioner T was denoted as T�1 in Knyazev(2001).4 Preonditioned subspae iterationsIn this setion, we will present a generalization of results of the previous twosetions to the ase, where m extreme eigenpairs are omputed simultaneouslyin so-alled subspae, or blok iteration methods.We need to return to the ase B = I again and onsider �rst the followingblok version of method (6).Let the urrent iterate U (i) be an n-by-m matrix with olumns, approximatingm eigenvetors of A, orresponding to m smallest eigenvalues. We assume that�U (i)�T U (i) = I; �U (i)�T AU (i) = diag(�(i)1 ; : : : ; �(i)m ) = �(i):13



We perform one step of iterationsÛ (i+1) = U (i) � T�1 �AU (i) � U (i)�(i)�
(i); (25)where 
(i) is anm-by-mmatrix, a generalization of the salar step size. Finally,we ompute the next iterate U (i+1) by the Rayleigh-Ritz proedure for thepenil A� �I on the trial subspae given by the olumn-spae of Û (i+1) suhthat�U (i+1)�T U (i+1) = I; �U (i+1)�T AU (i+1) = diag(�(i+1)1 ; : : : ; �(i+1)m ) = �(i+1):The preonditioned iterative method (25) with 
(i) = I is analyzed in Brambleet al. (1996), where a survey on various attempts to analyze this and simpli�edpreonditioned subspae shemes is also given. In this analysis, restritiveonditions on the initial subspae are assumed to be satis�ed.An alternative theory for method (25) with 
(i) = I is developed in Neymeyr(2000), based on the sharp onvergene rate estimate (8) of Neymeyr (2001a,b)for single-vetor preonditioned solver that we use in the previous two setions.The advantages of the approah of Neymeyr (2000) are that:� it is appliable to any initial subspaes,� the onvergene rate estimate an be used reursively, while the estimate ofBramble et al. (1996) annot,� the estimates for the onvergene of the Ritz values are individually sharpin a sense that an initial subspae and a preonditioner an be onstrutedso that the onvergene rate estimate for a �xed index j 2 [1; m℄ is attained,� the onvergene rate estimate for a �xed index j is exatly the same as (8)for the single-vetor method (6) with !(i) = 1.The only serious disadvantage of the estimates of Neymeyr (2000) is thatthey deteriorate when eigenvalues of interest �1; : : : ; �m inlude a luster. Theatual onvergene of method (25) in numerial tests is known not to besensitive to lustering of eigenvalues, and estimates of Bramble et al. (1996)do apture this property, essential for subspae iterations.A sharp simpli�ation of the estimate of Neymeyr (2000) is suggested in The-orem 5.1 of Knyazev (2001), but the proof is skethy and not omplete. In thissetion, we �ll these gaps in the arguments of Knyazev (2001).First, we reprodue here the result of Theorem 3.3 of Neymeyr (2000): for a�xed index j 2 [1; m℄, if �(i)j 2 [�kj ; �kj+1[ and the method (25) with 
(i) = Iis used, then�(i+1)j � �kj ;kj+1(�(i)j ; ); (26)14



where the latter quantity is given by (9). Now, using the fat that the estimate(26) is idential to (8) and that our proof of Theorem 1 provides an equiv-alent representation of expression (9), we immediately derive the followinggeneralization of Theorem 1 to the blok methodTheorem 9 The preonditioner is assumed to satisfy (1) for some  2 [0; 1[.For a �xed index j 2 [1; m℄, if �(i)j 2 [�kj ; �kj+1[ then it holds for the Ritz value�(i+1)j omputed by (25) with 
(i) = I that either �(i+1)j < �kj (unless kj = j),or �(i+1)j 2 [�kj ; �(i)j [.In the latter ase,�(i+1)j � �kj�kj+1 � �(i+1)j � �q �; �kj ; �kj+1��2 �(i)j � �kj�kj+1 � �(i)j ; (27)whereq �; �kj ; �kj+1� =  + (1� ) �kj�kj+1 = 1� (1� ) 1� �kj�kj+1! (28)is the onvergene fator.By analogy with Remarks 2 and 3, we have the following.Remark 10 For a �xed index j, the onvergene fator q �; �kj ; �kj+1� givenby (28) is sharp, as a funtion of the deisive quantities ; �kj ; �kj+1 only. Theestimate (27) is also asymptotially sharp, when �(i)j ! �kj , as it then turnsinto the sharp estimate (26).Let us highlight again that, while the onvergene fators (28) are sharp in-dividually, when we �x the index j, they are not sharp olletively, for allj = 1; : : : ; m, neither asymptotially, when the initial subspae is already loseto the seeking subspae spanned by the �rst m eigenvetors. In the latter ase,the estimates of Bramble et al. (1996) are better.Remark 11 There are several di�erent versions of the preonditioned bloksteepest desent; see, e.g., Knyazev (2000). In one of them, U (i+1) is omputedby the Rayleigh-Ritz method of the 2m-dimensional trial subspaes, spanned byolumns of U (i) and T�1 �AU (i) � U (i)�(i)�. This leads to Ritz values �(i+1)j ,whih are not larger than those produed by (25) with any 
(i), in partiular,with 
(i) = I. Thus, the onvergene rate estimate (27) with the onvergenefator (28) holds for this version of the preonditioned blok steepest desentmethod, too. Moreover, we an now assume (2) instead of (1) and use (16).15



Let now B 6= I; B > 0. Then we assume that�U (i)�T BU (i) = I; �U (i)�T AU (i) = diag(�(i)1 ; : : : ; �(i)m ) = �(i):We perform one step of iterationsÛ (i+1) = U (i) � T�1 �AU (i) � BU (i)�(i)�
(i); (29)and ompute the next iterate U (i+1) by the Rayleigh-Ritz proedure for thepenil A� �B on the trial subspae given by the olumn-spae of Û (i+1) suhthat�U (i+1)�T BU (i+1) = I; �U (i+1)�T AU (i+1) = diag(�(i+1)1 ; : : : ; �(i+1)m ) = �(i+1):Repeating the same arguments as those in the proof of Theorem 4, we onludethat Theorem 9 also trivially holds for the method (29) with 
(i) = I forsolving an generalized eigenvalue problem for penil A� �B, when B > 0.Finally, in the general ase, when B may not be de�nite, we modify the method(29) for the penil B � �A the following way: assuming that�U (i)�T AU (i) = I; �U (i)�T BU (i) = diag(�(i)1 ; : : : ; �(i)m ) =M (i);we perform one step of iterationsÛ (i+1) = U (i) � T�1 �BU (i) � AU (i)M (i)�
(i); (30)and ompute the next iterate U (i+1) by the Rayleigh-Ritz proedure for thepenil B � �A on the trial subspae given by the olumn-spae of Û (i+1) suhthat�U (i+1)�T AU (i+1) = I; �U (i+1)�T BU (i+1) = diag(�(i+1)1 ; : : : ; �(i+1)m ) = M (i+1):By analogy with the proof of Theorem 5, we deriveTheorem 12 The preonditioner is assumed to satisfy (1) for some  2 [0; 1[.For a �xed index j 2 [1; m℄, if �(i)j 2℄�kj+1; �kj ℄ then it holds for the Ritz value�(i+1)j omputed by (30) with
(i) = �M (i) � �minI��116



that either �(i+1)j > �kj (unless kj = j), or �(i+1)j 2℄�(i)j ; �kj ℄. In the latter ase,�kj+1 � �(i+1)j�(i+1)j � �kj � �q �; �kj ; �kj+1��2 �kj+1 � �(i)j�(i)j � �kj ; (31)whereq �; �kj ; �kj+1� = 1� (1� ) �kj � �kj+1�kj � �min ! (32)is the onvergene fator.Remark 13 If olumns of U (i+1) are omputed by the Rayleigh-Ritz methodfor the penil B � �A, as m Ritz vetors orresponding to the m largest Ritzvalues, on the 2m-dimensional trial subspae spanned by olumns of U (i) andT�1 �BU (i) � U (i)M (i)�, the onvergene rate estimate (31) with the onver-gene fator (32) holds for this version of the preonditioned blok steepestasent method, too. Moreover, we an now assume (2) instead of (1) and use(16).Remark 14 In the loally optimal blok preonditioned onjugate gradient(LOBPCG) method of Knyazev (2001), U (i+1) is omputed by the Rayleigh-Ritz method on the 3m-dimensional trial subspaes, spanned by olumns ofU (i�1); U (i) and T�1 �BU (i) � U (i)M (i)�. Thus, in LOBPCG the trial subspaeis enlarged ompare to that of the preonditioned blok steepest asent method,desribed in the previous remark. Therefore, evidently, the onvergene rateestimate (31) with the onvergene fator given by (32) with (16), assuming(2), holds for the LOBPCG method, too; see Theorem 5.1 of Knyazev (2001).Remark 14 provides us with the only presently known theoretial onvergenerate estimate of the LOBPCG. However, this estimates is, by onstrution,the same as that for the preonditioned blok steepest asent method, whih,in its turns, is the same as that of the PINVIT with the optimal saling. Nu-merial omparison of these methods aording to Knyazev (1998, 2000, 2001)demonstrates, however, that the LOBPCG method is in pratie muh faster.Therefore, �rstly, our theoretial onvergene estimates of the LOBPCG ofthe present paper are not sharp enough yet to explain exellent onvergeneproperties of the LOBPCG in numerial simulations, whih we illustrate next.Seondly, we an only present here numerial tests for the LOBPCG, and wedo not need to return bak to numerial simulations of Knyazev (1998, 2000,2001), whih already showed a superiority of the LOBPCG with respet tothe steepest asent method and PINVIT.17



5 A numerial exampleIn this �nal setion, we demonstrate pratial e�etiveness of the LOBPCGmethod for a model problem by omparing it with JDCG and JDQR methods,see Notay (2001); Sleijpen and Van der Vorst (1996), using a test programwritten by Notay, whih is publily available athttp://homepages.ulb.a.be/~ynotay/.We refer to a reent paper Morgan (2000) for numerial omparisons of JDQRwith the generalized Davidson method, the preonditioned Lanzos methods,and the inexat Rayleigh quotient iterations.We onsider, as in Notay (2001), the eigenproblem for the Laplaian on theL-shaped domain embedded in the unit square with the homogeneous Dirih-let boundary onditions. We ompute several smallest eigenvalues and orre-sponding eigenfuntions of its �nite di�erene disretization, using the stan-dard �ve point penil on a uniform mesh with the mesh size h = 1=180 and23941 inner nodes. The disretized eigenproblem is, therefore, a matrix eigen-value problem for the penil A � �I, where A is the sti�ness matrix for theLaplaian and the mass matrix is simply the identity. The matrix A is of thesize 23941 and has 118989 nonzero elements. Thus, the matrix vetor multipli-ation (MVM) Au has approximately the same osts as �ve vetor operations(VO).To hoose a preonditioner, we follow Notay (2001) and use an inompleteCholesky fatorization of the sti�ness matrix A with a drop tolerane (DT).Two DT values are tested: 10�3 and 10�4. A smaller DT improves the qualityof the preonditioner, but at the same time inreases the osts of onstrutingit and the osts of applying it on every iteration. The latter is alled the ostsof the preonditioner solve (PreS) and is approximately equivalent to 30 VOand 65 VO for DT 10�3 and 10�4, orrespondingly, for the preonditionerhosen.For eah preonditioner, we run two tests: one to ompute only the singlesmallest eigenpair and another to ompute ten smallest eigenpairs. The au-ray of the output results is heked by omputing the Eulidean norm of theresidual kAU (i) � U (i)�(i)k < �, where U (i) is the matrix whose olumns areomputed orthonormal approximations to eigenvetors and �(i) is the diagonalmatrix with the orresponding omputed approximations to the eigenvalues.Two auray levels are tested, � = 10�5 and � = 10�5:Table 1 provides numerial omparison of the latest, as of April 12, 2001,revision 3.3 of the LOBPCG ode with the data from Notay (2001) for theprevious revision 3.2 of the LOBPCG ode, JDCG ode by Yvan NOTAY, andJDQR ode by Gerard Sleijpen, for DT=10�3. Here, MVM and PreS lines18



Ax = b One eigenpair omputed by Ten eigenpairs omputed byby PCG 3.3 3.2 JDCG JDQR 3.3 3.2 JDCG JDQRAuray � = 10�5:MVM 33 15 15 21 27 140 350 165 144PreS 16 13 13 21 28 120 200 164 174CPU 6 7 NA 9 13 70 NA 80 110Auray � = 10�10:MVM 57 35 46 45 50 260 903 375 280PreS 28 33 33 45 55 240 380 375 350CPU 12 17 NA 20 27 120 NA 190 210Table 1Comparison of PCG, LOBPCG, JDCG, and JDQR odes for DT=10�3.show how many times the matrix vetor produt Au and the preonditionersolve Tu = f , respetively, are performed in di�erent methods. We also addresults for the preonditioned onjugate gradient (PCG) linear solver for thesystem Ax = b using the same preonditioner, where b is a pseudo randomvetor and the initial guess is simply the zero vetor.All tests are performed on a PIII 500Mhz omputer with 400Mb of PC100RAM, running MATLAB release 12 under MS Windows NT SP6. As opsount, used in Notay (2001), is no longer available in MATLAB release 12,it is replaed with CPU timing, in seonds, obtained by MATLAB's pro�ler.For the PCG tests, the built-in MATLAB PCG ode is used. The inompleteCholesky fatorization is omputed by the built-in MATLAB CHOLINC ode.Table 2 provides similar omparison of the revision 3.3 of the LOBPCG odewith PCG, JDCG and JDQR for DT=10�4.Before we start disussing main results demonstrated on Tables 1 and 2, letus highlight the main improvements made in LOBPCG revision 3.3:� In revision 3.2, some vetors in the basis of the trial subspae for theRayleigh-Ritz method were not normalized, whih resulted, when high a-uray was required, in instabilities due to badly saled Gram matries.This fored the method to perform extra orthogonalization with respetto the A-based salar produt, thus, inreasing the MVM number, f. theorresponding data for one eigenpair in Table 1. Without extra orthogo-nalization, eah step of LOBPCG requires one MVM and one PreS, seeKnyazev (2001). In revision 3.3, an impliit normalization of all vetors inthe basis of the trial subspae for the Rayleigh-Ritz method is implemented,19



Ax = b One eigenpair omputed by Ten eigenpairs omputed byby PCG 3.3 JDCG JDQR 3.3 JDCG JDQRAuray � = 10�5:MVM 15 10 13 19 100 115 100PreS 7 8 13 19 80 115 120CPU 7 7 10 15 60 90 120Auray � = 10�10:MVM 27 20 26 31 170 246 200PreS 13 18 26 34 150 246 260CPU 10 15 20 26 120 200 250Table 2Comparison of PCG, LOBPCG, JDCG, and JDQR odes for DT=10�4.whih inreased stability and eliminated any need for extra orthogonaliza-tion in the problem tested, f. 3.3 and 3.2 olumns at the bottom of Table1.� LOBPCG iterates vetors simultaneously, similar to lassial subspae it-erations. In some ases di�erent eigenpairs onverge with di�erent speed,see Figure 1 for the problems tested. In revision 3.2, the stopping riteriawas suh that simultaneous iterations were ontinually performed on alleigenpairs until the one with the worst speed was onverged. This resultedin some eigenpairs omputed muh more aurately than the others in the�nal output, e.g., in the 10 vetors ase with � = 10�5 presented in the rightupper orner of Table 1, some eigenpairs were in reality omputed with a-uray 10�10! Revision 3.3 freezes already onverged vetors and exludesthem from further iterations, whih redues signi�antly the total number ofMVM and PreS. This behavior is well illustrated on Figure 1 that presentsonvergene history in LOBPCG revision 3.3 for di�erent eigenpairs. Here,the smallest eigenpairs onverge muh faster and get frozen when they reahthe required auray level. We note, however, that the frozen eigenpairs inrevision 3.3 still partiipate atively in the Rayleigh-Ritz proedure, thus,they do get improved in the proess of iterations, e.g., in the test with teneigenpairs and � = 10�10, presented at the bottom of Table 2 and on theright piture on Figure 1 the singular value deomposition of AU (i)�U (i)�(i)of the �nal output reveals singular values ranging from 10�11 to 10�13.� Finally, more attention is paid in revision 3.3 to eliminate redundant al-gebrai omputations in the ode, whih somewhat dereases the osts ofevery iteration outside of the MVM and PreS.We �rst notie that the LOBPCG ode revision 3.3 onverges with essentiallythe same speed as the linear solver PCG, espeially for � = 10�5, in both20
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Fig. 1. LOBPCG onvergene history.tables. PCG does not involve omputing as many salar produts and linearombinations as in LOBPCG, whih leads to a better CPU time for PCG.We note that the number of MVM is arti�ially doubled in PCG, beausethe seond MVM is performed on every step in the ode only to ompute theatual residual.However, omparing an eigensolver, whih �nds the smallest eigenpair of thematrix A, to a linear solver, whih solves the system Ax = b, annot bepossibly aurate, simply beause the onvergene of the eigensolver dependson the gap between the smallest eigenvalue �1 and the next one, while theonvergene of the linear solver does not. A more preise omparison of theeigensolver, aording to Knyazev (2001), is with an iterative solver, whih�nds a nontrivial solution of the homogeneous equation (A� �1I)u = 0.We provide suh omparison for both hoies of the preonditioner on Figure2, using a ode PCGNULL, desribed in Knyazev (2001), that is a trivialmodi�ation of the MATLAB built-in PCG ode. We take the value of �1 fromthe LOBPCG run. The same initial guess, simply a vetor with all omponentsequal to one, is used in LOBPCG and PCGNULL.
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Fig. 2. LOBPCG vs. PCGNULLWe observe on Figure 2 not just a similar onvergene speed but a striking21



orrespondene of the error history lines. There is no an adequate explanationof suh a orrespondene and it remains a subjet of the urrent researh.We are now prepared to ompare the LOBPCG ode revision 3.3 with JDCGand JDQR. Most importantly, LOBPCG is always faster, in numbers of MVMand PreS, and in a raw CPU time. A faster onvergene of the LOBPCGevidently turns into even bigger advantage in terms of the CPU time when apreonditioner solve gets more expensive, as we observe by omparing Table1 with Table 2.This is no big surprise as far as JDQR is onerned, beause JDQR is a generalode that works in the nonsymmetri ase, too. The JDCG is, however, aspeially tuned, for the symmetri ase, version of the JDQR. The JDCGhas muh fewer, ompare to the LOBPCG, algebrai overheads, aordingto numerial results of Notay (2001), as it does not inlude the Rayleigh-Ritz proedure and orthogonalization is performed in the standard Eulideangeometry. The problem tested is espeially bene�ial for the JDCG, beauseMVM is so inexpensive and the mass matrix is identity.Let us remind the reader that the LOBPCG ode is written for generalizedeigenproblems, thus, even when the mass matrix is identity, suh a ode willbe more expensive ompare to a ode for Au = �u. No JDCG, or JDQR odeis publily available for generalized eigenproblems.The fat that JDCG is slower in our tests than the LOBPCG ould be at-tributed to a ommon devil of all outer-inner iterative solvers, like JDCG: nomatter how smart a strategy is used to determine the number of inner itera-tions, one annot math the performane of analogous methods without innersteps, like LOBPCG.Despite of the fat that the revision 3.3 of LOBPCG omputes eigenpairssimultaneously, dissimilar to JDCG and JDQR, whih ompute eigenpairs oneby one, they all sale well with respet to the number of eigenpairs seeking. Thenumber of PreS and the CPU time for ten eigenpairs grow, ompare to that forone eigenpair, no more than 10 times for all methods in all tests. We note thatthe hosen test problem does not have big lusters of eigenvalues. It might beexpeted that JDCG and JDQR would not perform as well in situations wheremany eigenvalues are lose to eah other, simply beause JDCG and JDQRompute eigenvetors separately, while LOBPCG is spei�ally designed forlusters. 22
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