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1 Introduction

Let A and T be real symmetric positive definite n-by-n matrices. We consider
the problem of computing the smallest eigenvalue \; and the corresponding
eigenvector u; of matrix A by preconditioned iterative methods, where T will
play the role of the preconditioner, e.g., Knyazev (2000). Such eigensolvers
are matrix—free, i.e. no A, neither the preconditioner 7" need to be available as
matrices, and are designed to solve efficiently and accurately extremely large
and ill-conditioned eigenvalue problems.

The trivial choice T' = I, see Kantorovich (1952) and Hestenes and Karush
(1951), suffers from poor convergence for ill-conditioned matrices, cf. Brad-
bury and Fletcher (1966); Feng and Owen (1996); Rodrigue (1973); Yang
(1991); Knyazev and Skorokhodov (1991). Preconditioned gradient methods
with a general preconditioner 7" for symmetric eigenvalue problem have been
studied, e.g., by Samokish (1958), Petryshyn (1968), Godunov et al. (1976),
D’yakonov and Orekhov (1980); D’yakonov (1983), Knyazev (1987, 1998) as
well as in the monograph D’yakonov (1996) and in a recent survey Knyazev
(2000), which include extensive bibliography. Such preconditioned eigensolvers
have been used in practice, e.g., for band structure calculations Dobson (1999);
Dobson et al. (2000), thin elastic structures Ovtchinnikov and Xanthis (2000),
and a real-space ab initio method for electronic structure calculations in terms
of nonorthogonal orbitals defined on a grid Fattebert and Bernholc (2000).
In the latter paper, a multigrid preconditioner is employed to improve the
steepest descent directions used in the iterative minimization of the energy
functional.

Let us also mention here briefly a number of very recent articles on precondi-
tioned eigensolvers, even though they are not as closely related to the subject
of the present paper as the papers cited in the previous paragraph. Oliveira
(1999) obtains asymptotic convergence rate estimate of the generalized David-
son method similar to that by Samokish (1958) for the preconditioned steepest
descent. Sadkane and Sidje (1999) discuss the block Davidson method with
deflation. Smit and Paardekooper (1999) study inexact inverse and Rayleigh
quotient iterations, using a perturbation technique somewhat comparable with
that used in Neymeyr (2001a,b), but explicitly based on the error reduction
rate of the inner iterations. Basermann (2000) applies a block incomplete LU
decomposition for preconditioning in the Jacobi-Davidson method Sleijpen
and Van der Vorst (1996); Bai et al. (2000). Ng (2000) uses for Toeplitz ma-
trices the preconditioned Lanczos method suggested and analyzed in Scott
(1981); Knyazev (1987); Morgan and Scott (1993), see also Bai et al. (2000).

Let || - |4 denote the A-based vector norm || - ||4 = (-, A-) as well as the cor-
responding induced operator norm. For our theoretical estimates, we assume



that the preconditioner 7" approximates the matrix A, such that

[T =T7"Ala <7, 0<y < L. (1)

In general, as both matrices A and T are symmetric positive definite, the
following always holds:

do(u, Tu) < (u, Au) < 61 (u, Tu), 0 < 5y < dy. (2)

The ratio d;/dy can be viewed as the spectral condition number x(T~'A) of
the preconditioned matrix 7-'A and measures how well the preconditioner T
approximates, up to a scaling, the matrix A. A smaller ratio d;/dq typically
ensures faster convergence. For mesh problems, matrices A and T are called
spectrally equivalent if the ratio is bounded from above uniformly in the mesh
size parameter, see D’yakonov (1996).

Assumption (1) leads to (2) with dp = 1 — v and 6; = 1 + . Vice versa,
assumption (2) leads to (1), but only if T is properly scaled. Namely, if T
satisfies (2) then optimally scaled 27'/(dy + 01) substituting T satisfies (1)
with

kK(T7'A) -1
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Our convergence estimates in the present paper for methods with optimal
scaling will be based on assumption (2) and will use v given by (3). We note
that some preconditioned eigensolvers, e.g., the steepest descent method we
will discuss later, implicitly provide the optimal scaling of the preconditioner.
In the rest of the paper, we will assume (1), unless explicitly stated otherwise,
in order to be consistent with the previous papers Neymeyr (2001a,b).

It is well-known that the minimum of the Rayleigh quotient

AMu) = where u € R", u # 0, (4)
u

is A\; and the corresponding stationary point is the eigenvector u; of A. Gradi-
ent preconditioned eigensolvers generate a sequence of nonzero vectors, which
minimizes the Rayleigh quotient, using its gradient, computed in the T-based
scalar product (-, -)r = (-,T"), see, e.g., D’yakonov (1996):

VrA(u) = T Y Au — Au)u). (5)

(u, u)r



The simplest method in this class, a two—term gradient minimization, can be
written as

where w® is a scalar step size. We will analyze the error reduction of one step
of the method,

u' =u—wl™ ' (Au — \u), (7)

where we discard upper indexes and denote v’ = vt y = u®, w = w®, and
A= A(u).

We will consider two choices of w here. The first case is an a priori fixed choice
w = 1. This choice is evidently affected by a preconditioner scaling.

The second choice corresponds to the well-known, e.g., D’yakonov (1996);
Knyazev (2000), preconditioned steepest descent for the Rayleigh quotient,
where w is chosen to minimize the Rayleigh quotient on the two-dimensional
subspace span{u, T~!'(Au— Au)} by means of the Rayleigh-Ritz method. This
leads to a 2-by-2 generalized eigenvalue problem that can be solved explicitly
by using formulas for roots of the corresponding characteristic equation, which
is in this case quadratic. We emphasize again that such choice of w implicitly
determines the optimal preconditioner scaling constant; thus, (3) can be used
in convergence rate estimates in this case.

Preconditioned steepest descent is an obvious way to accelerate the conver-
gence of the basic preconditioned eigensolver (7) with w = 1. There are sev-
eral practically more efficient algorithms, e.g., the recent successive eigenvalue
relaxation method of Ovtchinnikov and Xanthis (2001), and preconditioned
conjugate gradient algorithms for minimizing the Rayleigh quotient, using
an approximate inverse preconditioner, see a recent paper Bergamaschi et al.
(2000) and references there.

The most promising preconditioned eigensolver is the locally optimal block
preconditioned conjugate gradient (LOBPCG) method suggested and ana-
lyzed in Knyazev (1991, 1998, 2000, 2001). In LOBPCG for computing the
first eigenpair, the new iterate is determined by the Rayleigh—Ritz method on
a three-dimensional subspace, which includes the previous iterate in addition
to the current iterate and the preconditioned residual of the two-dimensional
trial subspace of the steepest descent method. The LOBPCG converges many
times faster than the steepest descent in numerical tests, and is argued in
Knyazev (2001) to be practically the optimal method on the whole class of
preconditioned eigensolvers. However, no simple comprehensive convergence



theory of the LOBPCG, explaining its apparent optimality, is yet known. The
reason is that deriving sharp convergence estimates is challenging even for
simplest preconditioned eigensolvers, such as that described by (7).

While an apparently sharp asymptotic convergence rate estimate for the pre-
conditioned steepest descent method appeared in the very first paper Samokish
(1958), a sharp non-asymptotic convergence rate estimate is not yet known
despite of major efforts over the decades; see Knyazev (1998) for the review
and references. For a simpler method, namely, (7) with w = 1, a sharp non-
asymptotic convergence rate estimate was proved only recently, in Neymeyr
(2001a,b). There, Neymeyr interpreted a preconditioned gradient method with
a fixed step size as a perturbation of a well known inverse iteration method,
in such a way that the associated system of linear equations was solved ap-
proximately by using a preconditioner. To highlight this, the method (7) with
w = 1 was called the Preconditioned INVerse ITeration (PINVIT). A simple
geometric interpretation of the method was discovered that provided a basis
for derivation of sharp convergence estimates Neymeyr (2001b).

The estimate of Neymeyr (2001a,b) is sharp, but too cumbersome for a hu-
man being. In the present paper, we discover and prove a much shorter and
more elegant, but still sharp, convergence rate estimate for the same method.
The new estimate also holds for a generalized symmetric definite eigenvalue
problem. It is simple enough to stimulate a search for a more straightforward
proof technique that might finally lead to considerable progress in theory of
practically important methods, such as LOBPCG Knyazev (2001).

There are several preconditioned eigensolvers, similar to classical subspace it-
erations, for computing an invariant subspace spanned by a group of eigenvec-
tors corresponding to several smallest eigenvalues of A; see; e.g., McCormick
and Noe (1977); Longsine and McCormick (1980); Bramble et al. (1996);
Knyazev (2000); Zhang et al. (1999) and, for trace minimization methods,
see Bai et al. (2000); Sameh and Tong (2000) and references there.

In Neymeyr (2000), the sharp convergence rate estimate of Neymeyr (2001a,b)
for single-vector preconditioned solver is generalized to cover similar subspace
iterations. A sharp simplification of the estimate of Neymeyr (2000) is sug-
gested in Knyazev (2001), but the proof is sketchy and not complete. In the
present paper, we fill these gaps in the arguments of Knyazev (2001).

The paper is organized as follows. In Section 2, we derive a new simple and
sharp convergence estimate for the PINVIT. Furthermore, we derive an upper
estimate for the convergence of preconditioned steepest descent. We extend
these results to generalized symmetric definite eigenproblems in Section 3. In
Section 4, we present similar convergence estimates for preconditioned sub-
space iterations. Numerical results are given in Section 5.



2 Preconditioned inverse iteration

According to formula (1.5) of Theorem 1.1 in Neymeyr (2001b), the sharp
estimate from above for the Rayleigh quotient of u/, computed by (7) with

w =1 is the following lengthy and, therefore, somewhat unreadable result: if
A= )\(u) S [)\k, )‘k-i-l[ then

A= A) < Mg (A7), (8)

)\k,k+1()\a7) =
A1t (A + At — A)?

(st = VO = ) Mg + A0 = A2 = A2yy)
=29/ A A1 (A = Ap) (A1 — A) (9)
\/)\k)\kJrl + (1 =7 = M)Ak — A)
2 2 -1
Ak + N1 = A (Ao + AN = A = Mg — )‘k+1)) ;

see the theorem below for the exact meaning of notations.

The estimate (8) is sharp in a sense that a preconditioner 7' and a vector
u can be found such that the bound for the Rayleigh quotient is attained.
Here, we present a concise convergence rate estimate for PINVIT, written in
different terms, which is also sharp, but in a different somewhat weaker sense;
see Remark 2 below.

Theorem 1 Let u € R" and let A = A(u) € [Ai, \y| be its Rayleigh quotient,
where A\ < ... <\, are the eigenvalues of A. The preconditioner is assumed
to satisfy (1) for some v € [0,1[. If X = Au) € [Ak, Ags1[ then it holds for the
Rayleigh quotient X' = \(u') with u' computed by (7) with w = 1 that either
N < A (unless k=1), or X € [A\g, Al. In the latter case,

N — N\ 9 A— Mg
— < i, A 10
)\k+1 NV (q (fya ks k+1)) )\k+1 _ )\7 ( )
where
A A
1O ) =y 1= =1 =) (1= 25 )
k+1 k+1

is the convergence factor.



PROOF. Evidently, having the estimate (8), we only need to show that the
maximum for all A € [\, Ag11[ of the function
)\k,k+1()\a ’Y) — A Ak — A
Akt = A1 (A7) A=A

(12)

where A xi1(), 7) is explicitly given in (9), is exactly (q (v, Ag, Aet1))”. It is
easy to check that the function takes this value, when A = Ay, however we are
not able to find a simple proof that it is the maximal value, using the expres-
sion for Agx4+1(A,y) from (9). Instead, we will use a different, though equiva-
lent, representation of A x41(A, ) from the Theorem 1.1 in Neymeyr (2001b),
which provides the “mini—dimensional analysis” in S = span{uy, uxy1}, see
also Theorem 5.1 in Neymeyr (2001a). We adopt the notations of the latter
theorem and set for convenience £ = 1 and k& + 1 = 2, without a loss of
generality:.

It is shown in Neymeyr (2001a) that the set of all iterates E.,, when one fixes
the vector u and chooses all preconditioners T satisfying (1), is a ball, in the
A-based scalar product. In the two-dimensional subspace S, the intersection
SNE, is a disk. The quantity r will denote the radius of the disk, and y and «
will be Cartesian coordinates of its center with respect to a Cartesian system
of coordinates, given by the A-orthonormal eigenvectors u; and uy of A, which
span S, correspondingly. Neymeyr (2001a) obtains the following formulas

)\()\ )\1 AN — )\ “A)(Ae = V)
X2(X2 — A1) M2 — M) A '

T =

According to Neymeyr (2001a), the unique maximum of the Rayleigh quotient
on the whole E., is actually attained on the disc SNE, and is given by A; 2(A, )
defined by formula (5.6) of Neymeyr (2001a), reproduced here:

Ma2(A ) = o
12 = e,

(13)

where e l
xl®+ry
(n,§) = (\/ 17 =&, W)
are the coordinates of the point of the maximum and [ is its Euclidean norm:;

moreover,
[ = /22 +y? — 12

Formula (9) is then derived from (13) in Neymeyr (2001a).

For our present proof, the geometric meaning of quantities is not at all im-
portant. The only important fact is that (13) provides a formula for A; 5(\, )



for known z,y and r, which, in their turn, are explicitly given as functions
of v, A, A1, and Ay only. The rest of the proof is nothing but simple, though
somewhat tedious, algebraic manipulations.

Directly from (13), we have
)\12 — )\1 . 52)\1 . )\1 (l‘l + T'y)2

)\2 — )\12 - 772)\2 - )\2 ($2 + y2)2 — (xl + Ty)2,

where in denominator
(2% +yH)? — (2l + ry)? = (yl — ar)2.
Here, yl — xr is positive because of y > r.

Explicit expressions for x and y give

)\2—)\ . y2)\1
)\—)\1 N 1‘2)\2.

Therefore, the convergence factor ¢, defined by

A2 — A1 Ay — A _ )\%92 (»Tl + T?J)Q . 2
Ao — A2 A=Ay )\%372 (yl - Tx)Q -

is equal to

_Awylal+ry) A L4+ =7
1= Nt (yl —rz) A —%

Direct computation shows that
1/2
yr Ao —1/2
—=v(A = A) [ —
" Y(A2 ) <A1> Z
and "
xr Ay _1/9
APNTS W WA e /
I ( 1) ()\2> <
with 2 = 72(A1 = A) (A2 — A) + A(A1 + A2 — A) > 0. Hence,

I
g\ = =2 (15)

) |
221 =50 )

We note again that value of g[A] squared in (15) must be the same as that of
the expression (12) with A 5(), ) given by (9) — it is just written in a more
civilized way.




We now want to eliminate dependence of the convergence factor ¢ on A, by
finding a sharp upper bound, independent of A. For that, let us show

q(\) <0,

which is equivalent to

Y/ A A (Ko — M) < Ay — A\p)2H? + (d%zl/?) oA = A) + (A=)},

Taking the square of both sides and inserting z and -z'/2, we observe after
factorization that the last inequality holds provided that the following quantity

(1= Q2= 22 A+ X=X [(L4+ )M + (1= 7)X] [(1T =) A + (L4 7)Aq]

is positive, which it trivially is under our assumptions 0 < v < 1 and 0 <
A1 < XA < Xo. Thus, ¢[)] takes its largest value, when A = \;:

)\1 )\1 )\1 )\1
M\ = -2 =2 -2 =1—a-—y1=2).
qM] =7+ ( 7))\2 N +7( A2) ( 7)( A2>

O

Remark 2 [t follows directly from the proof of the theorem above that the true
convergence factor in the estimate (10) may depend on X, but this dependence
15 not decisive. We eliminate \ to make the estimate much shorter.

Thus, our upper bound (11) of the convergence factor does not depend on A
and s sharp, as a function of the decisive quantities vy, A, A\p11 only. The
estimate (10) is also asymptotically sharp, when X — Xi, as it then turns into
the sharp estimate (8).

Remark 3 The preconditioned steepest descent for the Rayleigh quotient when
w 18 computed to minimize the Rayleigh quotient on the two-dimensional sub-
space span{u, T~ (Au — \u)}, evidently produces a smaller value \' compared
to that when w is chosen a priori. Thus, the convergence rate estimate (10)
with the convergence factor (11) holds for the preconditioned steepest descent
method, too. Moreover, we can now assume (2) instead of (1) and use (3) as
we already discussed in the Introduction, which leads to

2

LT AT (16)

This estimate for the preconditioned steepest descent is not apparently sharp as
can be seen by comparing it with the asymptotic estimate by Samokish (1958).



3 Generalized symmetric definite eigenvalue problems

We now consider a generalized symmetric definite eigenvalue problem of the
form (A — AB)u = 0 with real symmetric n-by-n matrices A and B, assuming
that A is positive definite. That describes a regular matrix pencil A — B with
a discrete spectrum (set of eigenvalues \). It is well known that such general-
ized eigenvalue problem has all real eigenvalues \; and corresponding (right)
eigenvectors u;, satisfying (A — \;B)u; = 0, can be chosen orthogonal in the
following sense: (u;, Au;) = (u;, Bu;) = 0, i # j. In some applications, the ma-
trix B is simply the identity, B = I, and then we have the standard symmetric
eigenvalue problem with matrix A, which has n real positive eigenvalues

0<)\min:)\1 S)\2§ ---S)\n:)\max-
We already discussed the case B = I in the previous section.

In general, when B # I, the pencil A — AB has n real, some possibly infinite,
eigenvalues. If B is nonsingular, all eigenvalues are finite. If B is positive semi-
definite, some eigenvalues are infinite, all other eigenvalues are positive, and
we consider the problem of computing the smallest m eigenvalues of the pencil
A — AB. When B is indefinite, it is convenient to consider the pencil uA — B
with eigenvalues

1

M:X’ Nminzﬂng"'gﬂlzﬂmax;

where we want to compute the largest m eigenvalues, p1,... ttm,, and corre-
sponding eigenvectors.

We first consider the case B > 0, when we may still use A\’s. We naturally
redefine the Rayleigh quotient (4) to

(u, Au)
(u, Bu)’

AMu) = where u € R", u # 0, (17)

and replace method (7) with the following:

u' =u—wT '(Au — \(u) Bu), (18)

still assuming that the preconditioner T" approximates A according to (1).

A different popular approach to deal with a generalized eigenvalue problem,
e.g., utilized in the ARPACK based MATLAB code EIGS.m, relies on ex-
plicit factorizations of the matrix B, A, or their linear combination. It cannot,

10



of course, be used in a matrix-free environment, when all matrices are only
available as matrix-vector-multiply (MVM) functions.

The method (18) is not new. It was previously studied, e.g., by D’yakonov and
Orekhov (1980); D’yakonov (1983, 1996). Here, we easily derive a new sharp
convergence estimate for it, using our previous result for B = I.

Theorem 4 Let B > 0. Let u € R and let A = A(u) € [A\1, A\y[ be its Rayleigh
quotient, where \; < ... < \, are the eigenvalues of B~YA. The preconditioner
is assumed to satisfy (1) for some v € [0,1[. If A = A(u) € [Ag, Apa[, then
it holds for the Rayleigh quotient X' = A\(u') with u' computed by (18) with
w =1 that either N < A, (unless k = 1), or X' € [Ag, A[. In the latter case,
the convergence estimate (10) holds with the convergence factor (11).

PROOF. As B > 0, the bilinear form (-,-)g = (-, B-) describes a scalar
product, in which matrices B~'T and B 'A are symmetric positive definite.
Let us make all the following substitutions at once:

()= (), B'A= A B 'T=T.

Then, the formula (18) turns into (7) and the generalized eigenvalue problem
for the pencil A — AB becomes a standard eigenvalue problem for the matrix
B~ 'A. Thus, we can use Theorem 4 that gives us the present theorem after
the back substitution to the original terms of the present section. O

Remarks 2 and 3 hold with evident modifications for B > 0.

To cover the general case, when B may not be definite, we replace \’s with
i's by switching from the pencil A — AB to the pencil B — uA. We redefine
the Rayleigh quotient (17) to

_ (u, Bu)
M(U) - (U,AU),

where u € R",u # 0, (19)

and replace method (18) with the following:

u' =u+wT Y(Bu — p(u)Au), (20)
still assuming that the preconditioner T" approximates A according to (1). We
are now interested in the largest eigenvalue y; of the matrix A~ 'B.

The method (18) was previously suggested, e.g., in Knyazev (1986) and repro-
duced in D’yakonov (1996). Now, we obtain a new sharp convergence estimate
for it, using our previous theorem.

11



Theorem 5 Let u € R™ and let p = p(u) €y, p1) be its Rayleigh quotient,
where (11 > ... > iy = lmin are the eigenvalues of A~'B. The preconditioner
is assumed to satisfy (1) for some v € [0,1[. If pp = p(w) €] g1, pu] then it
holds for the Rayleigh quotient p' = p(u') with u' computed by (20) with

1
W=
K — MUmin

that either ' > g (unless k = 1), or p' €|u, px). In the latter case, the
convergence estimate

e — 1 o Mk — [

<y , (21)
I = Mt
holds with the convergence factor
Hj — Hj+1
g=1-(1-9)~"—". (22)
Hi — Hmin

PROOF. We first rewrite the estimate of the previous theorem for B > 0 in
terms of u’s:

ps — 1 > Mk —

M5 — Wy
- <q Lq=1—(1— 92—t (23)
= Hk+1 H— fk41 Hj
Here we use the fact that
pe— 1 = e A= A A — A
W= B e — 0 Mg — A A=
and that
by _
d=1= =) (1 P ) =1 -t (21)
k+1 ok

Now, we are ready to deal with a general symmetric B. We use a trick, sug-
gested in Knyazev (1986) and reproduced in D’yakonov (1996). Namely, we
substitute our actual matrix B, which is not necessarily positive definite with
positive definite matrix B, = B —aA > 0, where a scalar a < fipin, and apply
the previous estimate (23) to the pencil B, — i, A with eigenvalues p, = p1—cv.
This gives (23), but with

qzl_(l_fy)w_
My — «

12



Finally, we realize that the method itself is invariant with respect to «a, except
for the scalar shift that must be now chosen as

1
p—a

w =

Moreover, everything depends continuously on o < fimin, SO We can take the
limit & = pumin as well. This proves estimate (21) with ¢ given by (22) O

Remarks 2 and 3 for general B turn into the following.

Remark 6 The convergence factor (22) is sharp, as a function of the decisive
quantities vy, f— fr+1, Hk— tmin 0nly. The estimate (21) is also asymptotically
sharp, when p — g, as it then turns into a sharp estimate.

Remark 7 The preconditioned steepest ascent for the Rayleigh quotient (19)
when w in (20) is computed to mazimize the Rayleigh quotient on the two-
dimensional subspace span{u, T~'(Bu — pAu)}, evidently produces a larger
value ' compare to that when w is chosen a priori. Thus, the convergence
rate estimate (21) with the convergence factor (22) holds for the preconditioned
steepest ascent method, too. Moreover, we can now assume (2) instead of (1)
and use (16).

Remark 8 In the locally optimal preconditioned conjugate gradient method
(4.2) of Knyazev (2001), the trial subspace is enlarged compare to that of the
preconditioned steepest ascent method of Remark 7. Thus, the convergence rate
estimate (21) with q given by (22) holds for the former method, too, assuming
(2) and taking (16). Our preconditioner T was denoted as T~ in Knyazev
(2001).

4 Preconditioned subspace iterations

In this section, we will present a generalization of results of the previous two
sections to the case, where m extreme eigenpairs are computed simultaneously
in so-called subspace, or block iteration methods.

We need to return to the case B = [ again and consider first the following
block version of method (6).

Let the current iterate U be an n-by-m matrix with columns, approximating
m eigenvectors of A, corresponding to m smallest eigenvalues. We assume that

(U®) v =1, (UD) AU® = diagA?,..., AD) = A©.

m

13



We perform one step of iterations

O+ = U — 71 (AU® — yOAD) o), (25)

where Q) is an m-by-m matrix, a generalization of the scalar step size. Finally,
we compute the next iterate UG+ by the Rayleigh-Ritz procedure for the
pencil A — AI on the trial subspace given by the column-space of U#*+Y such
that

(U(i+1))TU(i+1) _, (U”*”)TAU(”I) — diag(\U™D ..., AG+D) = AG+D),

»'m

The preconditioned iterative method (25) with Q) = I is analyzed in Bramble
et al. (1996), where a survey on various attempts to analyze this and simplified
preconditioned subspace schemes is also given. In this analysis, restrictive
conditions on the initial subspace are assumed to be satisfied.

An alternative theory for method (25) with Q) = I is developed in Neymeyr
(2000), based on the sharp convergence rate estimate (8) of Neymeyr (2001a,b)
for single-vector preconditioned solver that we use in the previous two sections.
The advantages of the approach of Neymeyr (2000) are that:

e it is applicable to any initial subspaces,

e the convergence rate estimate can be used recursively, while the estimate of
Bramble et al. (1996) cannot,

e the estimates for the convergence of the Ritz values are individually sharp
in a sense that an initial subspace and a preconditioner can be constructed
so that the convergence rate estimate for a fixed index j € [1,m] is attained,

e the convergence rate estimate for a fixed index j is exactly the same as (8)
for the single-vector method (6) with w® = 1.

The only serious disadvantage of the estimates of Neymeyr (2000) is that
they deteriorate when eigenvalues of interest Ay, ..., A, include a cluster. The
actual convergence of method (25) in numerical tests is known not to be
sensitive to clustering of eigenvalues, and estimates of Bramble et al. (1996)
do capture this property, essential for subspace iterations.

A sharp simplification of the estimate of Neymeyr (2000) is suggested in The-
orem 5.1 of Knyazev (2001), but the proof is sketchy and not complete. In this
section, we fill these gaps in the arguments of Knyazev (2001).

First, we reproduce here the result of Theorem 3.3 of Neymeyr (2000): for a
fixed index j € [1,m], if Y € [\, A, +1[ and the method (25) with Q0 = T
is used, then

)\g'i—'_l) S )\kj,kj-i-l ()‘gl)a 7)7 (26)

14



where the latter quantity is given by (9). Now, using the fact that the estimate
(26) is identical to (8) and that our proof of Theorem 1 provides an equiv-
alent representation of expression (9), we immediately derive the following
generalization of Theorem 1 to the block method

Theorem 9 The preconditioner is assumed to satisfy (1) for some v € [0, 1].
For a fized index j € [1,m], if )\g-i) € [Akj» Ak;+1] then it holds for the Ritz value
)\giﬂ) computed by (25) with Q¥ = I that either )\g-iﬂ) < Ak, (unless kj = j),
or MY e [, AP

J RAAY]

In the latter case,

S B I Moy Aig)) —L— ki (27)
i > \q1\7, kjs Nkj+1 )

)\kj+1 _ )\g +1) ( ( )) )\kj—l—l _ )\g)

where

q (% Ak )\kj+1) =7+ (1-7)

At =1-(1-7) (1— Akj) (28)

)\kj-l-l )‘kj-i-l

15 the convergence factor.
By analogy with Remarks 2 and 3, we have the following.

Remark 10 For a fized index j, the convergence factor q (*y, Ak, )\ij) given,
by (28) is sharp, as a function of the decisive quantities vy, A;, Ag;+1 only. The

estimate (27) is also asymptotically sharp, when )\y) — Ak;, as it then turns
into the sharp estimate (26).

Let us highlight again that, while the convergence factors (28) are sharp in-
dividually, when we fix the index j, they are not sharp collectively, for all
j=1,...,m, neither asymptotically, when the initial subspace is already close
to the seeking subspace spanned by the first m eigenvectors. In the latter case,
the estimates of Bramble et al. (1996) are better.

Remark 11 There are several different versions of the preconditioned block
steepest descent; see, e.g., Knyazev (2000). In one of them, UG+ s computed
by the Rayleigh-Ritz method of the 2m-dimensional trial subspaces, spanned by
columns of UD and T-! (AU(i) — U(i)A(i)). This leads to Ritz values A§Z+1),
which are not larger than those produced by (25) with any QY| in particular,
with QW = I. Thus, the convergence rate estimate (27) with the convergence
factor (28) holds for this version of the preconditioned block steepest descent
method, too. Moreover, we can now assume (2) instead of (1) and use (16).
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Let now B # I, B > 0. Then we assume that
@\ gy DT AU = diag(\? i) (i)
(™) BUD =1, (UD)" AUD = diag(A{",..., \)) = A©.
We perform one step of iterations

i+ — @) _ -t (AU(i) _ BU(i)A(i)) Q(i), (29)

and compute the next iterate U1 by the Rayleigh-Ritz procedure for the
pencil A — AB on the trial subspace given by the column-space of U+ such
that

(D) BUEHD = 1, (UGD)" AU = diag A+, ..., AGFD) = A,

m

Repeating the same arguments as those in the proof of Theorem 4, we conclude
that Theorem 9 also trivially holds for the method (29) with Q® = T for
solving an generalized eigenvalue problem for pencil A — AB, when B > 0.

Finally, in the general case, when B may not be definite, we modify the method
(29) for the pencil B — pA the following way: assuming that

(U(i))T AU =T, (U<i>)T BUD = diag(y\?, ..., u®D) = MO,

m

we perform one step of iterations

[+ _ ) _ et ( BUD _ AU M(i)) Q)| (30)

and compute the next iterate U0+ by the Rayleigh-Ritz procedure for the
pencil B — A on the trial subspace given by the column-space of U+ such
that

)’ F'm

(U(iJrl))TAU(iJrl) - (U(¢+1))TBU(¢+1) = diag(u{™Y, ..., plitD)y = MU+,

By analogy with the proof of Theorem 5, we derive

Theorem 12 The preconditioner is assumed to satisfy (1) for some y € [0, 1].
For a fized index j € [1,m], if /Lg-l) € k41, k] then it holds for the Ritz value
,uyﬂ) computed by (30) with

Q) = (MO~ pii I)‘l
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that either ugiH) > pr; (unless kj=j), or ugﬂ—l) E]ugi), pik;]. In the latter case,

(i+1) (4)
Hkj+1 — My 2 Pkj+1 — My
J(’H»I)—J S (q (77 Mkjaﬂkj-l-l)) J(i)ija (31)
K — Hk; Hj™ — Mk
where

luk]‘ - luk]‘+1> (32)

q(%ukj,ukjﬂ) =1-(1-9) (uk ——
j min

is the convergence factor.

Remark 13 If columns of UY are computed by the Rayleigh-Ritz method
for the pencil B — pA, as m Ritz vectors corresponding to the m largest Ritz
values, on the 2m-dimensional trial subspace spanned by columns of U and
T (BU(i) — U(i)M(i)), the convergence rate estimate (31) with the conver-
gence factor (32) holds for this version of the preconditioned block steepest
ascent method, too. Moreover, we can now assume (2) instead of (1) and use

(16).

Remark 14 In the locally optimal block preconditioned conjugate gradient
(LOBPCG) method of Knyazev (2001), UMY is computed by the Rayleigh-
Ritz method on the 3m-dimensional trial subspaces, spanned by columns of
Ut U® gnd T (BU(” — U(i)M(i)). Thus, in LOBPCG the trial subspace
15 enlarged compare to that of the preconditioned block steepest ascent method,
described in the previous remark. Therefore, evidently, the convergence rate
estimate (31) with the convergence factor given by (32) with (16), assuming
(2), holds for the LOBPCG method, too; see Theorem 5.1 of Knyazev (2001).

Remark 14 provides us with the only presently known theoretical convergence
rate estimate of the LOBPCG. However, this estimates is, by construction,
the same as that for the preconditioned block steepest ascent method, which,
in its turns, is the same as that of the PINVIT with the optimal scaling. Nu-
merical comparison of these methods according to Knyazev (1998, 2000, 2001)
demonstrates, however, that the LOBPCG method is in practice much faster.
Therefore, firstly, our theoretical convergence estimates of the LOBPCG of
the present paper are not sharp enough yet to explain excellent convergence
properties of the LOBPCG in numerical simulations, which we illustrate next.
Secondly, we can only present here numerical tests for the LOBPCG, and we
do not need to return back to numerical simulations of Knyazev (1998, 2000,
2001), which already showed a superiority of the LOBPCG with respect to
the steepest ascent method and PINVIT.
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5 A numerical example

In this final section, we demonstrate practical effectiveness of the LOBPCG
method for a model problem by comparing it with JDCG and JDQR methods,
see Notay (2001); Sleijpen and Van der Vorst (1996), using a test program
written by Notay, which is publicly available at
http://homepages.ulb.ac.be/ ynotay/.

We refer to a recent paper Morgan (2000) for numerical comparisons of JDQR
with the generalized Davidson method, the preconditioned Lanczos methods,
and the inexact Rayleigh quotient iterations.

We consider, as in Notay (2001), the eigenproblem for the Laplacian on the
L-shaped domain embedded in the unit square with the homogeneous Dirich-
let boundary conditions. We compute several smallest eigenvalues and corre-
sponding eigenfunctions of its finite difference discretization, using the stan-
dard five point pencil on a uniform mesh with the mesh size h = 1/180 and
23941 inner nodes. The discretized eigenproblem is, therefore, a matrix eigen-
value problem for the pencil A — AI, where A is the stiffness matrix for the
Laplacian and the mass matrix is simply the identity. The matrix A is of the
size 23941 and has 118989 nonzero elements. Thus, the matrix vector multipli-
cation (MVM) Au has approximately the same costs as five vector operations
(VO).

To choose a preconditioner, we follow Notay (2001) and use an incomplete
Cholesky factorization of the stiffness matrix A with a drop tolerance (DT).
Two DT values are tested: 1073 and 10~*. A smaller DT improves the quality
of the preconditioner, but at the same time increases the costs of constructing
it and the costs of applying it on every iteration. The latter is called the costs
of the preconditioner solve (PrecS) and is approximately equivalent to 30 VO
and 65 VO for DT 10~% and 10~*, correspondingly, for the preconditioner
chosen.

For each preconditioner, we run two tests: one to compute only the single
smallest eigenpair and another to compute ten smallest eigenpairs. The accu-
racy of the output results is checked by computing the Euclidean norm of the
residual |[AU® — UDAD|| < ¢, where U® is the matrix whose columns are
computed orthonormal approximations to eigenvectors and A® is the diagonal
matrix with the corresponding computed approximations to the eigenvalues.
Two accuracy levels are tested, e = 107° and € = 1075,

Table 1 provides numerical comparison of the latest, as of April 12, 2001,
revision 3.3 of the LOBPCG code with the data from Notay (2001) for the
previous revision 3.2 of the LOBPCG code, JDCG code by Yvan NOTAY, and
JDQR code by Gerard Sleijpen, for DT=10"2. Here, MVM and PrecS lines

18



Az = b | One eigenpair computed by | Ten eigenpairs computed by
by PCG | 3.3 3.2 JDCG JDQR | 33 3.2 JDCG JDQR

Accuracy € = 107°:

MVM 33 15 15 21 27 140 350 165 144
PrecS 16 13 13 21 28 120 200 164 174
CPU 6 7 NA 9 13 70 NA 80 110

Accuracy € = 10710:

MVM o7 35 46 45 50 260 903 375 280

PrecS 28 33 33 45 595 240 380 375 350

CPU 12 17 NA 20 27 120 NA 190 210
Table 1

Comparison of PCG, LOBPCG, JDCG, and JDQR codes for DT=10"3.

show how many times the matrix vector product Au and the preconditioner
solve Tu = f, respectively, are performed in different methods. We also add
results for the preconditioned conjugate gradient (PCG) linear solver for the
system Ax = b using the same preconditioner, where b is a pseudo random
vector and the initial guess is simply the zero vector.

All tests are performed on a PIII 500Mhz computer with 400Mb of PC100
RAM, running MATLAB release 12 under MS Windows NT SP6. As flops
count, used in Notay (2001), is no longer available in MATLAB release 12,
it is replaced with CPU timing, in seconds, obtained by MATLAB’s profiler.
For the PCG tests, the built-in MATLAB PCG code is used. The incomplete
Cholesky factorization is computed by the built-in MATLAB CHOLINC code.

Table 2 provides similar comparison of the revision 3.3 of the LOBPCG code
with PCG, JDCG and JDQR for DT=10"*.

Before we start discussing main results demonstrated on Tables 1 and 2, let
us highlight the main improvements made in LOBPCG revision 3.3:

e In revision 3.2, some vectors in the basis of the trial subspace for the
Rayleigh-Ritz method were not normalized, which resulted, when high ac-
curacy was required, in instabilities due to badly scaled Gram matrices.
This forced the method to perform extra orthogonalization with respect
to the A-based scalar product, thus, increasing the MVM number, cf. the
corresponding data for one eigenpair in Table 1. Without extra orthogo-
nalization, each step of LOBPCG requires one MVM and one PrecS, see
Knyazev (2001). In revision 3.3, an implicit normalization of all vectors in
the basis of the trial subspace for the Rayleigh-Ritz method is implemented,
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Az = b | One eigenpair computed by | Ten eigenpairs computed by
by PCG | 3.3 JDCG JDQR 3.3 JDCG JDQR

—5.

Accuracy € = 10

MVM 15 10 13 19 100 115 100
PrecS 7 8 13 19 80 115 120
CPU 7 7 10 15 60 90 120

Accuracy € = 10710:

MVM 27 20 26 31 170 246 200

PrecS 13 18 26 34 150 246 260

CPU 10 15 20 26 120 200 250
Table 2

Comparison of PCG, LOBPCG, JDCG, and JDQR codes for DT=10"*.

which increased stability and eliminated any need for extra orthogonaliza-
tion in the problem tested, cf. 3.3 and 3.2 columns at the bottom of Table
1.

e LOBPCG iterates vectors simultaneously, similar to classical subspace it-
erations. In some cases different eigenpairs converge with different speed,
see Figure 1 for the problems tested. In revision 3.2, the stopping criteria
was such that simultaneous iterations were continually performed on all
eigenpairs until the one with the worst speed was converged. This resulted
in some eigenpairs computed much more accurately than the others in the
final output, e.g., in the 10 vectors case with ¢ = 1075 presented in the right
upper corner of Table 1, some eigenpairs were in reality computed with ac-
curacy 10719 Revision 3.3 freezes already converged vectors and excludes
them from further iterations, which reduces significantly the total number of
MVM and PrecS. This behavior is well illustrated on Figure 1 that presents
convergence history in LOBPCG revision 3.3 for different eigenpairs. Here,
the smallest eigenpairs converge much faster and get frozen when they reach
the required accuracy level. We note, however, that the frozen eigenpairs in
revision 3.3 still participate actively in the Rayleigh-Ritz procedure, thus,
they do get improved in the process of iterations, e.g., in the test with ten
eigenpairs and € = 107'% presented at the bottom of Table 2 and on the
right picture on Figure 1 the singular value decomposition of AU® —U ) A®)
of the final output reveals singular values ranging from 107! to 10713

e Finally, more attention is paid in revision 3.3 to eliminate redundant al-
gebraic computations in the code, which somewhat decreases the costs of
every iteration outside of the MVM and PrecS.

We first notice that the LOBPCG code revision 3.3 converges with essentially
the same speed as the linear solver PCG, especially for ¢ = 1075, in both
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Convergence History, DT=1e-3 Convergence History, DT=1e-4
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Fig. 1. LOBPCG convergence history.

tables. PCG does not involve computing as many scalar products and linear
combinations as in LOBPCG, which leads to a better CPU time for PCG.
We note that the number of MVM is artificially doubled in PCG, because
the second MVM is performed on every step in the code only to compute the
actual residual.

However, comparing an eigensolver, which finds the smallest eigenpair of the
matrix A, to a linear solver, which solves the system Az = b, cannot be
possibly accurate, simply because the convergence of the eigensolver depends
on the gap between the smallest eigenvalue A; and the next one, while the
convergence of the linear solver does not. A more precise comparison of the
eigensolver, according to Knyazev (2001), is with an iterative solver, which
finds a nontrivial solution of the homogeneous equation (A — A\ I)u = 0.

We provide such comparison for both choices of the preconditioner on Figure
2, using a code PCGNULL, described in Knyazev (2001), that is a trivial
modification of the MATLAB built-in PCG code. We take the value of A\; from
the LOBPCG run. The same initial guess, simply a vector with all components
equal to one, is used in LOBPCG and PCGNULL.

Convergence History, DT=1e-3 Convergence History, DT=1e-4
T T T T T T T T T T T T T
“ PCGNULL Y Eggggg
-2 LOBPCG 2
107 —— N 0°F 1

10+

error
error

10° b

; 10° b
10°

107k

107k

L L L L L . L E| L L L L L L L L
5 10 15 20 25 30 2 4 6 8 10 12 14 16 18
iteration number iteration number

Fig. 2. LOBPCG vs. PCGNULL

We observe on Figure 2 not just a similar convergence speed but a striking
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correspondence of the error history lines. There is no an adequate explanation
of such a correspondence and it remains a subject of the current research.

We are now prepared to compare the LOBPCG code revision 3.3 with JDCG
and JDQR. Most importantly, LOBPCG is always faster, in numbers of MVM
and PrecS, and in a raw CPU time. A faster convergence of the LOBPCG
evidently turns into even bigger advantage in terms of the CPU time when a

preconditioner solve gets more expensive, as we observe by comparing Table
1 with Table 2.

This is no big surprise as far as JDQR is concerned, because JDQR is a general
code that works in the nonsymmetric case, too. The JDCG is, however, a
specially tuned, for the symmetric case, version of the JDQR. The JDCG
has much fewer, compare to the LOBPCG, algebraic overheads, according
to numerical results of Notay (2001), as it does not include the Rayleigh-
Ritz procedure and orthogonalization is performed in the standard Euclidean
geometry. The problem tested is especially beneficial for the JDCG, because
MVM is so inexpensive and the mass matrix is identity.

Let us remind the reader that the LOBPCG code is written for generalized
eigenproblems, thus, even when the mass matrix is identity, such a code will
be more expensive compare to a code for Au = \u. No JDCG, or JDQR. code
is publicly available for generalized eigenproblems.

The fact that JDCG is slower in our tests than the LOBPCG could be at-
tributed to a common devil of all outer-inner iterative solvers, like JDCG: no
matter how smart a strategy is used to determine the number of inner itera-
tions, one cannot match the performance of analogous methods without inner

steps, like LOBPCG.

Despite of the fact that the revision 3.3 of LOBPCG computes eigenpairs
simultaneously, dissimilar to JDCG and JDQR, which compute eigenpairs one
by one, they all scale well with respect to the number of eigenpairs seeking. The
number of PrecS and the CPU time for ten eigenpairs grow, compare to that for
one eigenpair, no more than 10 times for all methods in all tests. We note that
the chosen test problem does not have big clusters of eigenvalues. It might be
expected that JDCG and JDQR would not perform as well in situations where
many eigenvalues are close to each other, simply because JDCG and JDQR
compute eigenvectors separately, while LOBPCG is specifically designed for
clusters.
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Availability of Software for the Preconditioned Eigensolvers

The Internet page

http:// www-math.cudenver.edu/ aknyazev/software/CG/

is maintained by the first author. It contains, in particular, the MATLAB code
LOBPCG used for numerical experiments of the present paper.

Conclusion

We derive a short and sharp convergence rate estimate for basic preconditioned
eigensolvers. The analysis presented here should increase understanding and
provide tools for investigation of more efficient preconditioned eigensolvers,
such as LOBPCG Knyazev (2001), under development. Our numerical tests
support the main thesis of Knyazev (2001) that LOBPCG is, perhaps, a prac-
tically optimal preconditioned eigensolver for symmetric eigenproblems.
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