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1 Introdu
tionLet A and T be real symmetri
 positive de�nite n-by-n matri
es. We 
onsiderthe problem of 
omputing the smallest eigenvalue �1 and the 
orrespondingeigenve
tor u1 of matrix A by pre
onditioned iterative methods, where T willplay the role of the pre
onditioner, e.g., Knyazev (2000). Su
h eigensolversare matrix{free, i.e. no A, neither the pre
onditioner T need to be available asmatri
es, and are designed to solve eÆ
iently and a

urately extremely largeand ill{
onditioned eigenvalue problems.The trivial 
hoi
e T = I, see Kantorovi
h (1952) and Hestenes and Karush(1951), su�ers from poor 
onvergen
e for ill-
onditioned matri
es, 
f. Brad-bury and Flet
her (1966); Feng and Owen (1996); Rodrigue (1973); Yang(1991); Knyazev and Skorokhodov (1991). Pre
onditioned gradient methodswith a general pre
onditioner T for symmetri
 eigenvalue problem have beenstudied, e.g., by Samokish (1958), Petryshyn (1968), Godunov et al. (1976),D'yakonov and Orekhov (1980); D'yakonov (1983), Knyazev (1987, 1998) aswell as in the monograph D'yakonov (1996) and in a re
ent survey Knyazev(2000), whi
h in
lude extensive bibliography. Su
h pre
onditioned eigensolvershave been used in pra
ti
e, e.g., for band stru
ture 
al
ulations Dobson (1999);Dobson et al. (2000), thin elasti
 stru
tures Ovt
hinnikov and Xanthis (2000),and a real-spa
e ab initio method for ele
troni
 stru
ture 
al
ulations in termsof nonorthogonal orbitals de�ned on a grid Fattebert and Bernhol
 (2000).In the latter paper, a multigrid pre
onditioner is employed to improve thesteepest des
ent dire
tions used in the iterative minimization of the energyfun
tional.Let us also mention here brie
y a number of very re
ent arti
les on pre
ondi-tioned eigensolvers, even though they are not as 
losely related to the subje
tof the present paper as the papers 
ited in the previous paragraph. Oliveira(1999) obtains asymptoti
 
onvergen
e rate estimate of the generalized David-son method similar to that by Samokish (1958) for the pre
onditioned steepestdes
ent. Sadkane and Sidje (1999) dis
uss the blo
k Davidson method withde
ation. Smit and Paardekooper (1999) study inexa
t inverse and Rayleighquotient iterations, using a perturbation te
hnique somewhat 
omparable withthat used in Neymeyr (2001a,b), but expli
itly based on the error redu
tionrate of the inner iterations. Basermann (2000) applies a blo
k in
omplete LUde
omposition for pre
onditioning in the Ja
obi-Davidson method Sleijpenand Van der Vorst (1996); Bai et al. (2000). Ng (2000) uses for Toeplitz ma-tri
es the pre
onditioned Lan
zos method suggested and analyzed in S
ott(1981); Knyazev (1987); Morgan and S
ott (1993), see also Bai et al. (2000).Let k � kA denote the A-based ve
tor norm k � kA = (�; A�) as well as the 
or-responding indu
ed operator norm. For our theoreti
al estimates, we assume2



that the pre
onditioner T approximates the matrix A, su
h thatkI � T�1AkA � 
; 0 � 
 < 1: (1)In general, as both matri
es A and T are symmetri
 positive de�nite, thefollowing always holds:Æ0(u; Tu) � (u;Au) � Æ1(u; Tu); 0 < Æ0 � Æ1: (2)The ratio Æ1=Æ0 
an be viewed as the spe
tral 
ondition number �(T�1A) ofthe pre
onditioned matrix T�1A and measures how well the pre
onditioner Tapproximates, up to a s
aling, the matrix A. A smaller ratio Æ1=Æ0 typi
allyensures faster 
onvergen
e. For mesh problems, matri
es A and T are 
alledspe
trally equivalent if the ratio is bounded from above uniformly in the meshsize parameter, see D'yakonov (1996).Assumption (1) leads to (2) with Æ0 = 1 � 
 and Æ1 = 1 + 
. Vi
e versa,assumption (2) leads to (1), but only if T is properly s
aled. Namely, if Tsatis�es (2) then optimally s
aled 2T=(Æ0 + Æ1) substituting T satis�es (1)with
 = �(T�1A)� 1�(T�1A) + 1 : (3)Our 
onvergen
e estimates in the present paper for methods with optimals
aling will be based on assumption (2) and will use 
 given by (3). We notethat some pre
onditioned eigensolvers, e.g., the steepest des
ent method wewill dis
uss later, impli
itly provide the optimal s
aling of the pre
onditioner.In the rest of the paper, we will assume (1), unless expli
itly stated otherwise,in order to be 
onsistent with the previous papers Neymeyr (2001a,b).It is well-known that the minimum of the Rayleigh quotient�(u) = (u;Au)(u; u) ; where u 2 Rn ; u 6= 0; (4)is �1 and the 
orresponding stationary point is the eigenve
tor u1 of A. Gradi-ent pre
onditioned eigensolvers generate a sequen
e of nonzero ve
tors, whi
hminimizes the Rayleigh quotient, using its gradient, 
omputed in the T -baseds
alar produ
t (�; �)T = (�; T �), see, e.g., D'yakonov (1996):rT�(u) = 2(u; u)T T�1(Au� �(u)u): (5)3



The simplest method in this 
lass, a two{term gradient minimization, 
an bewritten asu(i+1) = u(i) � !(i)T�1 �Au(i) � �(u(i))u(i)� ; (6)where !(i) is a s
alar step size. We will analyze the error redu
tion of one stepof the method,u0 = u� !T�1(Au� �u); (7)where we dis
ard upper indexes and denote u0 = u(i+1), u = u(i), ! = !(i), and� = �(u(i)).We will 
onsider two 
hoi
es of ! here. The �rst 
ase is an a priori �xed 
hoi
e! = 1. This 
hoi
e is evidently a�e
ted by a pre
onditioner s
aling.The se
ond 
hoi
e 
orresponds to the well-known, e.g., D'yakonov (1996);Knyazev (2000), pre
onditioned steepest des
ent for the Rayleigh quotient,where ! is 
hosen to minimize the Rayleigh quotient on the two-dimensionalsubspa
e spanfu; T�1(Au��u)g by means of the Rayleigh{Ritz method. Thisleads to a 2-by-2 generalized eigenvalue problem that 
an be solved expli
itlyby using formulas for roots of the 
orresponding 
hara
teristi
 equation, whi
his in this 
ase quadrati
. We emphasize again that su
h 
hoi
e of ! impli
itlydetermines the optimal pre
onditioner s
aling 
onstant; thus, (3) 
an be usedin 
onvergen
e rate estimates in this 
ase.Pre
onditioned steepest des
ent is an obvious way to a

elerate the 
onver-gen
e of the basi
 pre
onditioned eigensolver (7) with ! = 1. There are sev-eral pra
ti
ally more eÆ
ient algorithms, e.g., the re
ent su

essive eigenvaluerelaxation method of Ovt
hinnikov and Xanthis (2001), and pre
onditioned
onjugate gradient algorithms for minimizing the Rayleigh quotient, usingan approximate inverse pre
onditioner, see a re
ent paper Bergamas
hi et al.(2000) and referen
es there.The most promising pre
onditioned eigensolver is the lo
ally optimal blo
kpre
onditioned 
onjugate gradient (LOBPCG) method suggested and ana-lyzed in Knyazev (1991, 1998, 2000, 2001). In LOBPCG for 
omputing the�rst eigenpair, the new iterate is determined by the Rayleigh{Ritz method ona three-dimensional subspa
e, whi
h in
ludes the previous iterate in additionto the 
urrent iterate and the pre
onditioned residual of the two-dimensionaltrial subspa
e of the steepest des
ent method. The LOBPCG 
onverges manytimes faster than the steepest des
ent in numeri
al tests, and is argued inKnyazev (2001) to be pra
ti
ally the optimal method on the whole 
lass ofpre
onditioned eigensolvers. However, no simple 
omprehensive 
onvergen
e4



theory of the LOBPCG, explaining its apparent optimality, is yet known. Thereason is that deriving sharp 
onvergen
e estimates is 
hallenging even forsimplest pre
onditioned eigensolvers, su
h as that des
ribed by (7).While an apparently sharp asymptoti
 
onvergen
e rate estimate for the pre-
onditioned steepest des
ent method appeared in the very �rst paper Samokish(1958), a sharp non-asymptoti
 
onvergen
e rate estimate is not yet knowndespite of major e�orts over the de
ades; see Knyazev (1998) for the reviewand referen
es. For a simpler method, namely, (7) with ! = 1, a sharp non-asymptoti
 
onvergen
e rate estimate was proved only re
ently, in Neymeyr(2001a,b). There, Neymeyr interpreted a pre
onditioned gradient method witha �xed step size as a perturbation of a well known inverse iteration method,in su
h a way that the asso
iated system of linear equations was solved ap-proximately by using a pre
onditioner. To highlight this, the method (7) with! = 1 was 
alled the Pre
onditioned INVerse ITeration (PINVIT). A simplegeometri
 interpretation of the method was dis
overed that provided a basisfor derivation of sharp 
onvergen
e estimates Neymeyr (2001b).The estimate of Neymeyr (2001a,b) is sharp, but too 
umbersome for a hu-man being. In the present paper, we dis
over and prove a mu
h shorter andmore elegant, but still sharp, 
onvergen
e rate estimate for the same method.The new estimate also holds for a generalized symmetri
 de�nite eigenvalueproblem. It is simple enough to stimulate a sear
h for a more straightforwardproof te
hnique that might �nally lead to 
onsiderable progress in theory ofpra
ti
ally important methods, su
h as LOBPCG Knyazev (2001).There are several pre
onditioned eigensolvers, similar to 
lassi
al subspa
e it-erations, for 
omputing an invariant subspa
e spanned by a group of eigenve
-tors 
orresponding to several smallest eigenvalues of A; see; e.g., M
Cormi
kand Noe (1977); Longsine and M
Cormi
k (1980); Bramble et al. (1996);Knyazev (2000); Zhang et al. (1999) and, for tra
e minimization methods,see Bai et al. (2000); Sameh and Tong (2000) and referen
es there.In Neymeyr (2000), the sharp 
onvergen
e rate estimate of Neymeyr (2001a,b)for single-ve
tor pre
onditioned solver is generalized to 
over similar subspa
eiterations. A sharp simpli�
ation of the estimate of Neymeyr (2000) is sug-gested in Knyazev (2001), but the proof is sket
hy and not 
omplete. In thepresent paper, we �ll these gaps in the arguments of Knyazev (2001).The paper is organized as follows. In Se
tion 2, we derive a new simple andsharp 
onvergen
e estimate for the PINVIT. Furthermore, we derive an upperestimate for the 
onvergen
e of pre
onditioned steepest des
ent. We extendthese results to generalized symmetri
 de�nite eigenproblems in Se
tion 3. InSe
tion 4, we present similar 
onvergen
e estimates for pre
onditioned sub-spa
e iterations. Numeri
al results are given in Se
tion 5.5



2 Pre
onditioned inverse iterationA

ording to formula (1.5) of Theorem 1.1 in Neymeyr (2001b), the sharpestimate from above for the Rayleigh quotient of u0, 
omputed by (7) with! = 1 is the following lengthy and, therefore, somewhat unreadable result: if� = �(u) 2 [�k; �k+1[ then�0 = �(u0) � �k;k+1(�; 
); (8)�k;k+1(�; 
) =��k�k+1(�k + �k+1 � �)2�
2(�k+1 � �)(�� �k)(��k+1 + ��k � �2k � �2k+1)�2
q�k�k+1(�� �k)(�k+1 � �) (9)q�k�k+1 + (1� 
2)(�� �k)(�k+1 � �)��(�k + �k+1 � �)(��k+1 + ��k � �2k � �k�k+1 � �2k+1)��1 ;see the theorem below for the exa
t meaning of notations.The estimate (8) is sharp in a sense that a pre
onditioner T and a ve
toru 
an be found su
h that the bound for the Rayleigh quotient is attained.Here, we present a 
on
ise 
onvergen
e rate estimate for PINVIT, written indi�erent terms, whi
h is also sharp, but in a di�erent somewhat weaker sense;see Remark 2 below.Theorem 1 Let u 2 Rn and let � = �(u) 2 [�1; �n[ be its Rayleigh quotient,where �1 � : : : � �n are the eigenvalues of A. The pre
onditioner is assumedto satisfy (1) for some 
 2 [0; 1[. If � = �(u) 2 [�k; �k+1[ then it holds for theRayleigh quotient �0 = �(u0) with u0 
omputed by (7) with ! = 1 that either�0 < �k (unless k = 1), or �0 2 [�k; �[. In the latter 
ase,�0 � �k�k+1 � �0 � (q (
; �k; �k+1))2 �� �k�k+1 � �; (10)whereq (
; �k; �k+1) = 
 + (1� 
) �k�k+1 = 1� (1� 
) 1� �k�k+1! (11)is the 
onvergen
e fa
tor. 6



PROOF. Evidently, having the estimate (8), we only need to show that themaximum for all � 2 [�k; �k+1[ of the fun
tion�k;k+1(�; 
)� �k�k+1 � �k;k+1(�; 
) �k+1 � ��� �k ; (12)where �k;k+1(�; 
) is expli
itly given in (9), is exa
tly (q (
; �k; �k+1))2. It iseasy to 
he
k that the fun
tion takes this value, when � = �k, however we arenot able to �nd a simple proof that it is the maximal value, using the expres-sion for �k;k+1(�; 
) from (9). Instead, we will use a di�erent, though equiva-lent, representation of �k;k+1(�; 
) from the Theorem 1.1 in Neymeyr (2001b),whi
h provides the \mini{dimensional analysis" in S = spanfuk; uk+1g, seealso Theorem 5.1 in Neymeyr (2001a). We adopt the notations of the lattertheorem and set for 
onvenien
e k = 1 and k + 1 = 2, without a loss ofgenerality.It is shown in Neymeyr (2001a) that the set of all iterates E
, when one �xesthe ve
tor u and 
hooses all pre
onditioners T satisfying (1), is a ball, in theA{based s
alar produ
t. In the two-dimensional subspa
e S, the interse
tionS\E
 is a disk. The quantity r will denote the radius of the disk, and y and xwill be Cartesian 
oordinates of its 
enter with respe
t to a Cartesian systemof 
oordinates, given by the A{orthonormal eigenve
tors u1 and u2 of A, whi
hspan S, 
orrespondingly. Neymeyr (2001a) obtains the following formulas:x = vuut �(�� �1)�2(�2 � �1) ; y = vuut �(�2 � �)�1(�2 � �1) ; r = 
s(�� �1)(�2 � �)�1�2 :A

ording to Neymeyr (2001a), the unique maximum of the Rayleigh quotienton the whole E
 is a
tually attained on the dis
 S\E
 and is given by �1;2(�; 
)de�ned by formula (5.6) of Neymeyr (2001a), reprodu
ed here:�1;2(�; 
) = �2 + �2�2=�1 + �2=�2 ; (13)where (�; �) = (ql2 � �2; xl2 + rylx2 + y2 )are the 
oordinates of the point of the maximum and l is its Eu
lidean norm;moreover, l = qx2 + y2 � r2:Formula (9) is then derived from (13) in Neymeyr (2001a).For our present proof, the geometri
 meaning of quantities is not at all im-portant. The only important fa
t is that (13) provides a formula for �1;2(�; 
)7



for known x; y and r, whi
h, in their turn, are expli
itly given as fun
tionsof 
; �; �1, and �2 only. The rest of the proof is nothing but simple, thoughsomewhat tedious, algebrai
 manipulations.Dire
tly from (13), we have�12 � �1�2 � �12 = �2�1�2�2 = �1�2 (xl + ry)2(x2 + y2)2 � (xl + ry)2 ;where in denominator(x2 + y2)2 � (xl + ry)2 = (yl � xr)2:Here, yl � xr is positive be
ause of y > r.Expli
it expressions for x and y give�2 � ��� �1 = y2�1x2�2 :Therefore, the 
onvergen
e fa
tor q, de�ned by�12 � �1�2 � �12 �2 � ��� �1 = �21y2�22x2 (xl + ry)2(yl � rx)2 =: q2;is equal toq = �1y(xl + ry)�2x(yl � rx) = �1�2 1 + yrxl1� xryl > 0: (14)Dire
t 
omputation shows thatyrxl = 
(�2 � �) �2�1!1=2 z�1=2and xryl = 
(�� �1) �1�2!1=2 z�1=2with z = 
2(�1 � �)(�2 � �) + �(�1 + �2 � �) > 0. Hen
e,q[�℄ = r�1�2 z1=2 + 
(�2 � �)r�2�1 z1=2 � 
(�� �1) : (15)We note again that value of q[�℄ squared in (15) must be the same as that ofthe expression (12) with �1;2(�; 
) given by (9) | it is just written in a more
ivilized way. 8



We now want to eliminate dependen
e of the 
onvergen
e fa
tor q on �, by�nding a sharp upper bound, independent of �. For that, let us showq0(�) < 0;whi
h is equivalent to
q�1�2(�2 � �1) < (�2 � �1)z1=2 + ( dd�z1=2) f�2(�2 � �) + �1(�� �1)g :Taking the square of both sides and inserting z and dd�z1=2, we observe afterfa
torization that the last inequality holds provided that the following quantity(1�
2)(�2��1)2(�1+�2��)2 [(1 + 
)�1 + (1� 
)�2℄ [(1� 
)�1 + (1 + 
)�2℄is positive, whi
h it trivially is under our assumptions 0 � 
 < 1 and 0 <�1 � � < �2. Thus, q[�℄ takes its largest value, when � = �1:q[�1℄ = 
 + (1� 
)�1�2 = �1�2 + 
  1� �1�2! = 1� (1� 
) 1� �1�2! :2Remark 2 It follows dire
tly from the proof of the theorem above that the true
onvergen
e fa
tor in the estimate (10) may depend on �, but this dependen
eis not de
isive. We eliminate � to make the estimate mu
h shorter.Thus, our upper bound (11) of the 
onvergen
e fa
tor does not depend on �and is sharp, as a fun
tion of the de
isive quantities 
; �k; �k+1 only. Theestimate (10) is also asymptoti
ally sharp, when �! �k, as it then turns intothe sharp estimate (8).Remark 3 The pre
onditioned steepest des
ent for the Rayleigh quotient when! is 
omputed to minimize the Rayleigh quotient on the two-dimensional sub-spa
e spanfu; T�1(Au� �u)g, evidently produ
es a smaller value �0 
omparedto that when ! is 
hosen a priori. Thus, the 
onvergen
e rate estimate (10)with the 
onvergen
e fa
tor (11) holds for the pre
onditioned steepest des
entmethod, too. Moreover, we 
an now assume (2) instead of (1) and use (3) aswe already dis
ussed in the Introdu
tion, whi
h leads to1� 
 = 2�(T�1A) + 1 ; (16)This estimate for the pre
onditioned steepest des
ent is not apparently sharp as
an be seen by 
omparing it with the asymptoti
 estimate by Samokish (1958).9



3 Generalized symmetri
 de�nite eigenvalue problemsWe now 
onsider a generalized symmetri
 de�nite eigenvalue problem of theform (A��B)u = 0 with real symmetri
 n-by-n matri
es A and B, assumingthat A is positive de�nite. That des
ribes a regular matrix pen
il A��B witha dis
rete spe
trum (set of eigenvalues �). It is well known that su
h general-ized eigenvalue problem has all real eigenvalues �i and 
orresponding (right)eigenve
tors ui, satisfying (A � �iB)ui = 0, 
an be 
hosen orthogonal in thefollowing sense: (ui; Auj) = (ui; Buj) = 0; i 6= j: In some appli
ations, the ma-trix B is simply the identity, B = I, and then we have the standard symmetri
eigenvalue problem with matrix A, whi
h has n real positive eigenvalues0 < �min = �1 � �2 � : : : � �n = �max:We already dis
ussed the 
ase B = I in the previous se
tion.In general, when B 6= I; the pen
il A� �B has n real, some possibly in�nite,eigenvalues. If B is nonsingular, all eigenvalues are �nite. If B is positive semi-de�nite, some eigenvalues are in�nite, all other eigenvalues are positive, andwe 
onsider the problem of 
omputing the smallestm eigenvalues of the pen
ilA� �B. When B is inde�nite, it is 
onvenient to 
onsider the pen
il �A�Bwith eigenvalues � = 1�; �min = �n � � � � � �1 = �max;where we want to 
ompute the largest m eigenvalues, �1; : : : �m, and 
orre-sponding eigenve
tors.We �rst 
onsider the 
ase B > 0, when we may still use �'s. We naturallyrede�ne the Rayleigh quotient (4) to�(u) = (u;Au)(u;Bu); where u 2 Rn ; u 6= 0; (17)and repla
e method (7) with the following:u0 = u� !T�1(Au� �(u)Bu); (18)still assuming that the pre
onditioner T approximates A a

ording to (1).A di�erent popular approa
h to deal with a generalized eigenvalue problem,e.g., utilized in the ARPACK based MATLAB 
ode EIGS.m, relies on ex-pli
it fa
torizations of the matrix B, A, or their linear 
ombination. It 
annot,10



of 
ourse, be used in a matrix-free environment, when all matri
es are onlyavailable as matrix-ve
tor-multiply (MVM) fun
tions.The method (18) is not new. It was previously studied, e.g., by D'yakonov andOrekhov (1980); D'yakonov (1983, 1996). Here, we easily derive a new sharp
onvergen
e estimate for it, using our previous result for B = I.Theorem 4 Let B > 0. Let u 2 Rn and let � = �(u) 2 [�1; �n[ be its Rayleighquotient, where �1 � : : : � �n are the eigenvalues of B�1A. The pre
onditioneris assumed to satisfy (1) for some 
 2 [0; 1[. If � = �(u) 2 [�k; �k+1[, thenit holds for the Rayleigh quotient �0 = �(u0) with u0 
omputed by (18) with! = 1 that either �0 < �k (unless k = 1), or �0 2 [�k; �[. In the latter 
ase,the 
onvergen
e estimate (10) holds with the 
onvergen
e fa
tor (11).PROOF. As B > 0, the bilinear form (�; �)B = (�; B�) des
ribes a s
alarprodu
t, in whi
h matri
es B�1T and B�1A are symmetri
 positive de�nite.Let us make all the following substitutions at on
e:(�; �)B ) (�; �); B�1A) A; B�1T ) T:Then, the formula (18) turns into (7) and the generalized eigenvalue problemfor the pen
il A� �B be
omes a standard eigenvalue problem for the matrixB�1A. Thus, we 
an use Theorem 4 that gives us the present theorem afterthe ba
k substitution to the original terms of the present se
tion. 2Remarks 2 and 3 hold with evident modi�
ations for B > 0.To 
over the general 
ase, when B may not be de�nite, we repla
e �'s with�'s by swit
hing from the pen
il A � �B to the pen
il B � �A. We rede�nethe Rayleigh quotient (17) to�(u) = (u;Bu)(u;Au) ; where u 2 Rn ; u 6= 0; (19)and repla
e method (18) with the following:u0 = u+ !T�1(Bu� �(u)Au); (20)still assuming that the pre
onditioner T approximates A a

ording to (1). Weare now interested in the largest eigenvalue �1 of the matrix A�1B.The method (18) was previously suggested, e.g., in Knyazev (1986) and repro-du
ed in D'yakonov (1996). Now, we obtain a new sharp 
onvergen
e estimatefor it, using our previous theorem. 11



Theorem 5 Let u 2 Rn and let � = �(u) 2℄�n; �1℄ be its Rayleigh quotient,where �1 � : : : � �n = �min are the eigenvalues of A�1B. The pre
onditioneris assumed to satisfy (1) for some 
 2 [0; 1[. If � = �(u) 2℄�k+1; �k℄ then itholds for the Rayleigh quotient �0 = �(u0) with u0 
omputed by (20) with! = 1�� �minthat either �0 > �k (unless k = 1), or �0 2℄�; �k℄. In the latter 
ase, the
onvergen
e estimate�k � �0�0 � �k+1 � q2 �k � ��� �k+1 ; (21)holds with the 
onvergen
e fa
torq = 1� (1� 
)�j � �j+1�j � �min : (22)PROOF. We �rst rewrite the estimate of the previous theorem for B > 0 interms of �'s:�k � �0�0 � �k+1 � q2 �k � ��� �k+1 ; q = 1� (1� 
)�j � �j+1�j : (23)Here we use the fa
t that�k � �0�0 � �k+1 �� �k+1�k � � = �0 � �k�k+1 � �0 �k+1 � ��� �kand thatq = 1� (1� 
) 1� �k�k+1! = 1� (1� 
)�k � �k+1�k : (24)Now, we are ready to deal with a general symmetri
 B. We use a tri
k, sug-gested in Knyazev (1986) and reprodu
ed in D'yakonov (1996). Namely, wesubstitute our a
tual matrix B, whi
h is not ne
essarily positive de�nite withpositive de�nite matrix B� = B��A > 0, where a s
alar � < �min, and applythe previous estimate (23) to the pen
il B����A with eigenvalues �� = ���.This gives (23), but with q = 1� (1� 
)�k � �k+1�k � � :12



Finally, we realize that the method itself is invariant with respe
t to �, ex
eptfor the s
alar shift that must be now 
hosen as! = 1�� �:Moreover, everything depends 
ontinuously on � < �min, so we 
an take thelimit � = �min as well. This proves estimate (21) with q given by (22) 2Remarks 2 and 3 for general B turn into the following.Remark 6 The 
onvergen
e fa
tor (22) is sharp, as a fun
tion of the de
isivequantities 
; �k��k+1; �k��min only. The estimate (21) is also asymptoti
allysharp, when �! �k, as it then turns into a sharp estimate.Remark 7 The pre
onditioned steepest as
ent for the Rayleigh quotient (19)when ! in (20) is 
omputed to maximize the Rayleigh quotient on the two-dimensional subspa
e spanfu; T�1(Bu � �Au)g, evidently produ
es a largervalue �0 
ompare to that when ! is 
hosen a priori. Thus, the 
onvergen
erate estimate (21) with the 
onvergen
e fa
tor (22) holds for the pre
onditionedsteepest as
ent method, too. Moreover, we 
an now assume (2) instead of (1)and use (16).Remark 8 In the lo
ally optimal pre
onditioned 
onjugate gradient method(4.2) of Knyazev (2001), the trial subspa
e is enlarged 
ompare to that of thepre
onditioned steepest as
ent method of Remark 7. Thus, the 
onvergen
e rateestimate (21) with q given by (22) holds for the former method, too, assuming(2) and taking (16). Our pre
onditioner T was denoted as T�1 in Knyazev(2001).4 Pre
onditioned subspa
e iterationsIn this se
tion, we will present a generalization of results of the previous twose
tions to the 
ase, where m extreme eigenpairs are 
omputed simultaneouslyin so-
alled subspa
e, or blo
k iteration methods.We need to return to the 
ase B = I again and 
onsider �rst the followingblo
k version of method (6).Let the 
urrent iterate U (i) be an n-by-m matrix with 
olumns, approximatingm eigenve
tors of A, 
orresponding to m smallest eigenvalues. We assume that�U (i)�T U (i) = I; �U (i)�T AU (i) = diag(�(i)1 ; : : : ; �(i)m ) = �(i):13



We perform one step of iterationsÛ (i+1) = U (i) � T�1 �AU (i) � U (i)�(i)�
(i); (25)where 
(i) is anm-by-mmatrix, a generalization of the s
alar step size. Finally,we 
ompute the next iterate U (i+1) by the Rayleigh-Ritz pro
edure for thepen
il A� �I on the trial subspa
e given by the 
olumn-spa
e of Û (i+1) su
hthat�U (i+1)�T U (i+1) = I; �U (i+1)�T AU (i+1) = diag(�(i+1)1 ; : : : ; �(i+1)m ) = �(i+1):The pre
onditioned iterative method (25) with 
(i) = I is analyzed in Brambleet al. (1996), where a survey on various attempts to analyze this and simpli�edpre
onditioned subspa
e s
hemes is also given. In this analysis, restri
tive
onditions on the initial subspa
e are assumed to be satis�ed.An alternative theory for method (25) with 
(i) = I is developed in Neymeyr(2000), based on the sharp 
onvergen
e rate estimate (8) of Neymeyr (2001a,b)for single-ve
tor pre
onditioned solver that we use in the previous two se
tions.The advantages of the approa
h of Neymeyr (2000) are that:� it is appli
able to any initial subspa
es,� the 
onvergen
e rate estimate 
an be used re
ursively, while the estimate ofBramble et al. (1996) 
annot,� the estimates for the 
onvergen
e of the Ritz values are individually sharpin a sense that an initial subspa
e and a pre
onditioner 
an be 
onstru
tedso that the 
onvergen
e rate estimate for a �xed index j 2 [1; m℄ is attained,� the 
onvergen
e rate estimate for a �xed index j is exa
tly the same as (8)for the single-ve
tor method (6) with !(i) = 1.The only serious disadvantage of the estimates of Neymeyr (2000) is thatthey deteriorate when eigenvalues of interest �1; : : : ; �m in
lude a 
luster. Thea
tual 
onvergen
e of method (25) in numeri
al tests is known not to besensitive to 
lustering of eigenvalues, and estimates of Bramble et al. (1996)do 
apture this property, essential for subspa
e iterations.A sharp simpli�
ation of the estimate of Neymeyr (2000) is suggested in The-orem 5.1 of Knyazev (2001), but the proof is sket
hy and not 
omplete. In thisse
tion, we �ll these gaps in the arguments of Knyazev (2001).First, we reprodu
e here the result of Theorem 3.3 of Neymeyr (2000): for a�xed index j 2 [1; m℄, if �(i)j 2 [�kj ; �kj+1[ and the method (25) with 
(i) = Iis used, then�(i+1)j � �kj ;kj+1(�(i)j ; 
); (26)14



where the latter quantity is given by (9). Now, using the fa
t that the estimate(26) is identi
al to (8) and that our proof of Theorem 1 provides an equiv-alent representation of expression (9), we immediately derive the followinggeneralization of Theorem 1 to the blo
k methodTheorem 9 The pre
onditioner is assumed to satisfy (1) for some 
 2 [0; 1[.For a �xed index j 2 [1; m℄, if �(i)j 2 [�kj ; �kj+1[ then it holds for the Ritz value�(i+1)j 
omputed by (25) with 
(i) = I that either �(i+1)j < �kj (unless kj = j),or �(i+1)j 2 [�kj ; �(i)j [.In the latter 
ase,�(i+1)j � �kj�kj+1 � �(i+1)j � �q �
; �kj ; �kj+1��2 �(i)j � �kj�kj+1 � �(i)j ; (27)whereq �
; �kj ; �kj+1� = 
 + (1� 
) �kj�kj+1 = 1� (1� 
) 1� �kj�kj+1! (28)is the 
onvergen
e fa
tor.By analogy with Remarks 2 and 3, we have the following.Remark 10 For a �xed index j, the 
onvergen
e fa
tor q �
; �kj ; �kj+1� givenby (28) is sharp, as a fun
tion of the de
isive quantities 
; �kj ; �kj+1 only. Theestimate (27) is also asymptoti
ally sharp, when �(i)j ! �kj , as it then turnsinto the sharp estimate (26).Let us highlight again that, while the 
onvergen
e fa
tors (28) are sharp in-dividually, when we �x the index j, they are not sharp 
olle
tively, for allj = 1; : : : ; m, neither asymptoti
ally, when the initial subspa
e is already 
loseto the seeking subspa
e spanned by the �rst m eigenve
tors. In the latter 
ase,the estimates of Bramble et al. (1996) are better.Remark 11 There are several di�erent versions of the pre
onditioned blo
ksteepest des
ent; see, e.g., Knyazev (2000). In one of them, U (i+1) is 
omputedby the Rayleigh-Ritz method of the 2m-dimensional trial subspa
es, spanned by
olumns of U (i) and T�1 �AU (i) � U (i)�(i)�. This leads to Ritz values �(i+1)j ,whi
h are not larger than those produ
ed by (25) with any 
(i), in parti
ular,with 
(i) = I. Thus, the 
onvergen
e rate estimate (27) with the 
onvergen
efa
tor (28) holds for this version of the pre
onditioned blo
k steepest des
entmethod, too. Moreover, we 
an now assume (2) instead of (1) and use (16).15



Let now B 6= I; B > 0. Then we assume that�U (i)�T BU (i) = I; �U (i)�T AU (i) = diag(�(i)1 ; : : : ; �(i)m ) = �(i):We perform one step of iterationsÛ (i+1) = U (i) � T�1 �AU (i) � BU (i)�(i)�
(i); (29)and 
ompute the next iterate U (i+1) by the Rayleigh-Ritz pro
edure for thepen
il A� �B on the trial subspa
e given by the 
olumn-spa
e of Û (i+1) su
hthat�U (i+1)�T BU (i+1) = I; �U (i+1)�T AU (i+1) = diag(�(i+1)1 ; : : : ; �(i+1)m ) = �(i+1):Repeating the same arguments as those in the proof of Theorem 4, we 
on
ludethat Theorem 9 also trivially holds for the method (29) with 
(i) = I forsolving an generalized eigenvalue problem for pen
il A� �B, when B > 0.Finally, in the general 
ase, when B may not be de�nite, we modify the method(29) for the pen
il B � �A the following way: assuming that�U (i)�T AU (i) = I; �U (i)�T BU (i) = diag(�(i)1 ; : : : ; �(i)m ) =M (i);we perform one step of iterationsÛ (i+1) = U (i) � T�1 �BU (i) � AU (i)M (i)�
(i); (30)and 
ompute the next iterate U (i+1) by the Rayleigh-Ritz pro
edure for thepen
il B � �A on the trial subspa
e given by the 
olumn-spa
e of Û (i+1) su
hthat�U (i+1)�T AU (i+1) = I; �U (i+1)�T BU (i+1) = diag(�(i+1)1 ; : : : ; �(i+1)m ) = M (i+1):By analogy with the proof of Theorem 5, we deriveTheorem 12 The pre
onditioner is assumed to satisfy (1) for some 
 2 [0; 1[.For a �xed index j 2 [1; m℄, if �(i)j 2℄�kj+1; �kj ℄ then it holds for the Ritz value�(i+1)j 
omputed by (30) with
(i) = �M (i) � �minI��116



that either �(i+1)j > �kj (unless kj = j), or �(i+1)j 2℄�(i)j ; �kj ℄. In the latter 
ase,�kj+1 � �(i+1)j�(i+1)j � �kj � �q �
; �kj ; �kj+1��2 �kj+1 � �(i)j�(i)j � �kj ; (31)whereq �
; �kj ; �kj+1� = 1� (1� 
) �kj � �kj+1�kj � �min ! (32)is the 
onvergen
e fa
tor.Remark 13 If 
olumns of U (i+1) are 
omputed by the Rayleigh-Ritz methodfor the pen
il B � �A, as m Ritz ve
tors 
orresponding to the m largest Ritzvalues, on the 2m-dimensional trial subspa
e spanned by 
olumns of U (i) andT�1 �BU (i) � U (i)M (i)�, the 
onvergen
e rate estimate (31) with the 
onver-gen
e fa
tor (32) holds for this version of the pre
onditioned blo
k steepestas
ent method, too. Moreover, we 
an now assume (2) instead of (1) and use(16).Remark 14 In the lo
ally optimal blo
k pre
onditioned 
onjugate gradient(LOBPCG) method of Knyazev (2001), U (i+1) is 
omputed by the Rayleigh-Ritz method on the 3m-dimensional trial subspa
es, spanned by 
olumns ofU (i�1); U (i) and T�1 �BU (i) � U (i)M (i)�. Thus, in LOBPCG the trial subspa
eis enlarged 
ompare to that of the pre
onditioned blo
k steepest as
ent method,des
ribed in the previous remark. Therefore, evidently, the 
onvergen
e rateestimate (31) with the 
onvergen
e fa
tor given by (32) with (16), assuming(2), holds for the LOBPCG method, too; see Theorem 5.1 of Knyazev (2001).Remark 14 provides us with the only presently known theoreti
al 
onvergen
erate estimate of the LOBPCG. However, this estimates is, by 
onstru
tion,the same as that for the pre
onditioned blo
k steepest as
ent method, whi
h,in its turns, is the same as that of the PINVIT with the optimal s
aling. Nu-meri
al 
omparison of these methods a

ording to Knyazev (1998, 2000, 2001)demonstrates, however, that the LOBPCG method is in pra
ti
e mu
h faster.Therefore, �rstly, our theoreti
al 
onvergen
e estimates of the LOBPCG ofthe present paper are not sharp enough yet to explain ex
ellent 
onvergen
eproperties of the LOBPCG in numeri
al simulations, whi
h we illustrate next.Se
ondly, we 
an only present here numeri
al tests for the LOBPCG, and wedo not need to return ba
k to numeri
al simulations of Knyazev (1998, 2000,2001), whi
h already showed a superiority of the LOBPCG with respe
t tothe steepest as
ent method and PINVIT.17



5 A numeri
al exampleIn this �nal se
tion, we demonstrate pra
ti
al e�e
tiveness of the LOBPCGmethod for a model problem by 
omparing it with JDCG and JDQR methods,see Notay (2001); Sleijpen and Van der Vorst (1996), using a test programwritten by Notay, whi
h is publi
ly available athttp://homepages.ulb.a
.be/~ynotay/.We refer to a re
ent paper Morgan (2000) for numeri
al 
omparisons of JDQRwith the generalized Davidson method, the pre
onditioned Lan
zos methods,and the inexa
t Rayleigh quotient iterations.We 
onsider, as in Notay (2001), the eigenproblem for the Lapla
ian on theL-shaped domain embedded in the unit square with the homogeneous Diri
h-let boundary 
onditions. We 
ompute several smallest eigenvalues and 
orre-sponding eigenfun
tions of its �nite di�eren
e dis
retization, using the stan-dard �ve point pen
il on a uniform mesh with the mesh size h = 1=180 and23941 inner nodes. The dis
retized eigenproblem is, therefore, a matrix eigen-value problem for the pen
il A � �I, where A is the sti�ness matrix for theLapla
ian and the mass matrix is simply the identity. The matrix A is of thesize 23941 and has 118989 nonzero elements. Thus, the matrix ve
tor multipli-
ation (MVM) Au has approximately the same 
osts as �ve ve
tor operations(VO).To 
hoose a pre
onditioner, we follow Notay (2001) and use an in
ompleteCholesky fa
torization of the sti�ness matrix A with a drop toleran
e (DT).Two DT values are tested: 10�3 and 10�4. A smaller DT improves the qualityof the pre
onditioner, but at the same time in
reases the 
osts of 
onstru
tingit and the 
osts of applying it on every iteration. The latter is 
alled the 
ostsof the pre
onditioner solve (Pre
S) and is approximately equivalent to 30 VOand 65 VO for DT 10�3 and 10�4, 
orrespondingly, for the pre
onditioner
hosen.For ea
h pre
onditioner, we run two tests: one to 
ompute only the singlesmallest eigenpair and another to 
ompute ten smallest eigenpairs. The a

u-ra
y of the output results is 
he
ked by 
omputing the Eu
lidean norm of theresidual kAU (i) � U (i)�(i)k < �, where U (i) is the matrix whose 
olumns are
omputed orthonormal approximations to eigenve
tors and �(i) is the diagonalmatrix with the 
orresponding 
omputed approximations to the eigenvalues.Two a

ura
y levels are tested, � = 10�5 and � = 10�5:Table 1 provides numeri
al 
omparison of the latest, as of April 12, 2001,revision 3.3 of the LOBPCG 
ode with the data from Notay (2001) for theprevious revision 3.2 of the LOBPCG 
ode, JDCG 
ode by Yvan NOTAY, andJDQR 
ode by Gerard Sleijpen, for DT=10�3. Here, MVM and Pre
S lines18



Ax = b One eigenpair 
omputed by Ten eigenpairs 
omputed byby PCG 3.3 3.2 JDCG JDQR 3.3 3.2 JDCG JDQRA

ura
y � = 10�5:MVM 33 15 15 21 27 140 350 165 144Pre
S 16 13 13 21 28 120 200 164 174CPU 6 7 NA 9 13 70 NA 80 110A

ura
y � = 10�10:MVM 57 35 46 45 50 260 903 375 280Pre
S 28 33 33 45 55 240 380 375 350CPU 12 17 NA 20 27 120 NA 190 210Table 1Comparison of PCG, LOBPCG, JDCG, and JDQR 
odes for DT=10�3.show how many times the matrix ve
tor produ
t Au and the pre
onditionersolve Tu = f , respe
tively, are performed in di�erent methods. We also addresults for the pre
onditioned 
onjugate gradient (PCG) linear solver for thesystem Ax = b using the same pre
onditioner, where b is a pseudo randomve
tor and the initial guess is simply the zero ve
tor.All tests are performed on a PIII 500Mhz 
omputer with 400Mb of PC100RAM, running MATLAB release 12 under MS Windows NT SP6. As 
ops
ount, used in Notay (2001), is no longer available in MATLAB release 12,it is repla
ed with CPU timing, in se
onds, obtained by MATLAB's pro�ler.For the PCG tests, the built-in MATLAB PCG 
ode is used. The in
ompleteCholesky fa
torization is 
omputed by the built-in MATLAB CHOLINC 
ode.Table 2 provides similar 
omparison of the revision 3.3 of the LOBPCG 
odewith PCG, JDCG and JDQR for DT=10�4.Before we start dis
ussing main results demonstrated on Tables 1 and 2, letus highlight the main improvements made in LOBPCG revision 3.3:� In revision 3.2, some ve
tors in the basis of the trial subspa
e for theRayleigh-Ritz method were not normalized, whi
h resulted, when high a
-
ura
y was required, in instabilities due to badly s
aled Gram matri
es.This for
ed the method to perform extra orthogonalization with respe
tto the A-based s
alar produ
t, thus, in
reasing the MVM number, 
f. the
orresponding data for one eigenpair in Table 1. Without extra orthogo-nalization, ea
h step of LOBPCG requires one MVM and one Pre
S, seeKnyazev (2001). In revision 3.3, an impli
it normalization of all ve
tors inthe basis of the trial subspa
e for the Rayleigh-Ritz method is implemented,19



Ax = b One eigenpair 
omputed by Ten eigenpairs 
omputed byby PCG 3.3 JDCG JDQR 3.3 JDCG JDQRA

ura
y � = 10�5:MVM 15 10 13 19 100 115 100Pre
S 7 8 13 19 80 115 120CPU 7 7 10 15 60 90 120A

ura
y � = 10�10:MVM 27 20 26 31 170 246 200Pre
S 13 18 26 34 150 246 260CPU 10 15 20 26 120 200 250Table 2Comparison of PCG, LOBPCG, JDCG, and JDQR 
odes for DT=10�4.whi
h in
reased stability and eliminated any need for extra orthogonaliza-tion in the problem tested, 
f. 3.3 and 3.2 
olumns at the bottom of Table1.� LOBPCG iterates ve
tors simultaneously, similar to 
lassi
al subspa
e it-erations. In some 
ases di�erent eigenpairs 
onverge with di�erent speed,see Figure 1 for the problems tested. In revision 3.2, the stopping 
riteriawas su
h that simultaneous iterations were 
ontinually performed on alleigenpairs until the one with the worst speed was 
onverged. This resultedin some eigenpairs 
omputed mu
h more a

urately than the others in the�nal output, e.g., in the 10 ve
tors 
ase with � = 10�5 presented in the rightupper 
orner of Table 1, some eigenpairs were in reality 
omputed with a
-
ura
y 10�10! Revision 3.3 freezes already 
onverged ve
tors and ex
ludesthem from further iterations, whi
h redu
es signi�
antly the total number ofMVM and Pre
S. This behavior is well illustrated on Figure 1 that presents
onvergen
e history in LOBPCG revision 3.3 for di�erent eigenpairs. Here,the smallest eigenpairs 
onverge mu
h faster and get frozen when they rea
hthe required a

ura
y level. We note, however, that the frozen eigenpairs inrevision 3.3 still parti
ipate a
tively in the Rayleigh-Ritz pro
edure, thus,they do get improved in the pro
ess of iterations, e.g., in the test with teneigenpairs and � = 10�10, presented at the bottom of Table 2 and on theright pi
ture on Figure 1 the singular value de
omposition of AU (i)�U (i)�(i)of the �nal output reveals singular values ranging from 10�11 to 10�13.� Finally, more attention is paid in revision 3.3 to eliminate redundant al-gebrai
 
omputations in the 
ode, whi
h somewhat de
reases the 
osts ofevery iteration outside of the MVM and Pre
S.We �rst noti
e that the LOBPCG 
ode revision 3.3 
onverges with essentiallythe same speed as the linear solver PCG, espe
ially for � = 10�5, in both20
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Fig. 1. LOBPCG 
onvergen
e history.tables. PCG does not involve 
omputing as many s
alar produ
ts and linear
ombinations as in LOBPCG, whi
h leads to a better CPU time for PCG.We note that the number of MVM is arti�
ially doubled in PCG, be
ausethe se
ond MVM is performed on every step in the 
ode only to 
ompute thea
tual residual.However, 
omparing an eigensolver, whi
h �nds the smallest eigenpair of thematrix A, to a linear solver, whi
h solves the system Ax = b, 
annot bepossibly a

urate, simply be
ause the 
onvergen
e of the eigensolver dependson the gap between the smallest eigenvalue �1 and the next one, while the
onvergen
e of the linear solver does not. A more pre
ise 
omparison of theeigensolver, a

ording to Knyazev (2001), is with an iterative solver, whi
h�nds a nontrivial solution of the homogeneous equation (A� �1I)u = 0.We provide su
h 
omparison for both 
hoi
es of the pre
onditioner on Figure2, using a 
ode PCGNULL, des
ribed in Knyazev (2001), that is a trivialmodi�
ation of the MATLAB built-in PCG 
ode. We take the value of �1 fromthe LOBPCG run. The same initial guess, simply a ve
tor with all 
omponentsequal to one, is used in LOBPCG and PCGNULL.
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Fig. 2. LOBPCG vs. PCGNULLWe observe on Figure 2 not just a similar 
onvergen
e speed but a striking21




orresponden
e of the error history lines. There is no an adequate explanationof su
h a 
orresponden
e and it remains a subje
t of the 
urrent resear
h.We are now prepared to 
ompare the LOBPCG 
ode revision 3.3 with JDCGand JDQR. Most importantly, LOBPCG is always faster, in numbers of MVMand Pre
S, and in a raw CPU time. A faster 
onvergen
e of the LOBPCGevidently turns into even bigger advantage in terms of the CPU time when apre
onditioner solve gets more expensive, as we observe by 
omparing Table1 with Table 2.This is no big surprise as far as JDQR is 
on
erned, be
ause JDQR is a general
ode that works in the nonsymmetri
 
ase, too. The JDCG is, however, aspe
ially tuned, for the symmetri
 
ase, version of the JDQR. The JDCGhas mu
h fewer, 
ompare to the LOBPCG, algebrai
 overheads, a

ordingto numeri
al results of Notay (2001), as it does not in
lude the Rayleigh-Ritz pro
edure and orthogonalization is performed in the standard Eu
lideangeometry. The problem tested is espe
ially bene�
ial for the JDCG, be
auseMVM is so inexpensive and the mass matrix is identity.Let us remind the reader that the LOBPCG 
ode is written for generalizedeigenproblems, thus, even when the mass matrix is identity, su
h a 
ode willbe more expensive 
ompare to a 
ode for Au = �u. No JDCG, or JDQR 
odeis publi
ly available for generalized eigenproblems.The fa
t that JDCG is slower in our tests than the LOBPCG 
ould be at-tributed to a 
ommon devil of all outer-inner iterative solvers, like JDCG: nomatter how smart a strategy is used to determine the number of inner itera-tions, one 
annot mat
h the performan
e of analogous methods without innersteps, like LOBPCG.Despite of the fa
t that the revision 3.3 of LOBPCG 
omputes eigenpairssimultaneously, dissimilar to JDCG and JDQR, whi
h 
ompute eigenpairs oneby one, they all s
ale well with respe
t to the number of eigenpairs seeking. Thenumber of Pre
S and the CPU time for ten eigenpairs grow, 
ompare to that forone eigenpair, no more than 10 times for all methods in all tests. We note thatthe 
hosen test problem does not have big 
lusters of eigenvalues. It might beexpe
ted that JDCG and JDQR would not perform as well in situations wheremany eigenvalues are 
lose to ea
h other, simply be
ause JDCG and JDQR
ompute eigenve
tors separately, while LOBPCG is spe
i�
ally designed for
lusters. 22
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