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MULTILEVEL METHOD FOR MIXED EIGENPROBLEMSR. HIPTMAIR� AND K. NEYMEYRyAbstrat. For a Lipshitz-polyhedron 
 � R3 we onsider eigenvalue problems url� urlu =�u and grad� divu = �u, � > 0, set in H(url; 
) and H(div; 
). They are disretized by meansof the onforming �nite elements introdued by N�ed�ele. The preonditioned inverse iteration inits subspae variant is adapted to these problems. A standard multigrid sheme serves as preon-ditioner. The main hallenge arises from the large kernels of the operators url and div. However,thanks to the hoie of �nite element spaes these kernels have a diret representation through thegradients/rotations of disrete potentials. This makes it possible to use a multigrid iteration in poten-tial spae to obtain approximate projetions onto the orthogonal omplements of the kernels. Thereis ample evidene that this will lead to an asymptotially optimal method. Numerial experimentson�rm the exellent performane of the method even on very �ne grids.Key words. Mixed eigenvalue problems, edge elements, Raviart-Thomas elements, mixed �niteelements, preonditioned inverse iteration, multigrid methodsAMS subjet lassi�ations.1. Introdution. Let 
 � R3 be a Lipshitz-polyhedron [33℄, whose boundaryis partitioned into �D and �N . Our fous is on the vetor-valued eigenvalue problemsurl� url u = �u in 
 ;divu = 0 in 
 ; u� n = 0 on �D ;� url u� n = 0 on �N ; (1.1)and grad� divu = �u in 
 ;url u = 0 in 
 ; u � n = 0 on �D ;� divu � n = 0 on �N : (1.2)Here, the vetor�elds u is an eigenfuntion, � � 0 stands for the eigenvalue and� 2 L1(
) is a uniformly positive oeÆient.We seek approximations of a few of the smallest non-zero eigenvalues and or-responding eigenfuntions. This problem is of onsiderable relevane in several areasof sienti� omputing. For instane, (1.1) desribes so-alled eletromagneti res-onators, if u is regarded as the (saled) eletri �eld. We refer to [1, Set. 1℄ for moredetailed explanations. When we want to determine a ouple of the lowest resonantmodes for a given avity 
, we enounter exatly the eigenvalue problem (1.1). Be-yond the alulation of resonant modes, approximations of the lowest eigenmodes arethe basis for modal approahes: A set of dominant modes is omputed one, and the�elds at other frequenies are then approximated by a superposition of these modes.This an be used to extrat lumped parameters for eletromagneti devies in thefrequeny domain. A ompletely di�erent appliation emerges in the study of oupledsolid-uid systems. When one tries to �nd their eigenmodes, the eigenvalue problem(1.2) pops up [7℄.Of ourse, there is a lose relationship between (1.1) and (1.2) and eigenvalue prob-lems for seond order ellipti di�erential operators. For the latter ase, whih amountsto a generalized eigenvalue problem for large sparse symmetri positive de�nite ma-tries, a huge body of work about numerial solution methods has been ompiled overthe years [4, 5, 20, 35, 44, 46℄. The driving fore was the sheer size of the eigenproblems�SFB 382, Universit�at T�ubingenyMathematishes Institut, Universit�at T�ubingen1



2 R. Hiptmair and K. Neymeyrarising from disretized PDEs. Millions of unknowns rule out the use of methods thatrely on dense matries or fatorizations. In addition, it is highly desirable to avoid adeterioration of the onvergene of the iterative shemes for large problems. As faras the solution of disretized ellipti boundary value problems is onerned, multigridmethods meet this requirement. It turned out that the multigrid idea an be graftedonto solution methods for disrete ellipti eigenproblems in several ways resulting ineigensolvers with optimal or quasi{optimal omputational omplexity. For instane,Hakbush [35, 36℄ applies multigrid priniples diretly to the nonlinear eigenvalueproblem to ompute eigenvalue/vetor approximations on the �nal grid by ombininga multigrid iteration and nested iteration. Let us also mention the multigrid minimiza-tion tehnique of Mandel and MCormik [46℄, its extension by Deuhard et al. [25℄,as well as the lass of methods whih apply multigrid as a linear solver. Essentially,the idea underlying this last lass is to linearize the disrete eigenvalue problem bymethods like inverse iteration [54℄ and to solve the assoiated system of linear equa-tions approximately by multigrid [5℄. Representing the appliation of the multigridproedure by a multigrid preonditioner and taking inverse iteration (without a shift)as an outer iteration de�nes preonditioned inverse iteration (PINVIT). Reently, anew onvergene theory for preonditioned inverse iteration has been devised provid-ing sharp onvergene estimates and substantial insight into the underlying geometry[52, 53℄.The sheme of preonditioned inverse iteration is also known in the literature aspreonditioned gradient method for the eigenvalue problem. The idea behind this termis to ompute a sequene of iterates with dereasing Rayleigh quotients by suessivelyorreting the iterates in the diretion of the negative preonditioned gradient of theRayleigh quotient. By doing so, one expets that the sequene of iterates onverges toan eigenvetor while the Rayleigh quotients tend to the smallest eigenvalue. Preondi-tioned gradient methods have been studied predominantly by Russian authors, see forinstane Samokish [56℄, Petryshyn [55℄, Godunov et al. [32℄, D'yakonov et al. [26, 28℄,Knyazev [43, 44℄ as well as the monograph of D'yakonov [27℄ inluding an extensivebibliography. Knyazev in [44℄ gives a survey on preonditioned eigensolvers.Preonditioned inverse iteration has been generalized to a subspae algorithm foromputing some of the smallest eigenvalues together with the eigenvetors by emulat-ing the subspae variant of inverse iteration [54℄. One again, the assoiated matrixequation is solved approximately. After eah subspae orretion step the Rayleigh{Ritz proedure is applied. It provides the Ritz values and Ritz vetors spanning theapproximating subspae. Convergene estimates have been presented in [18, 50℄. Insum, the resulting preonditioned eigensolver inherits the typial asymptoti multigrideÆieny from the multigrid proedure used to solve the assoiated linear equations.On a smaller sale, researhers have also investigated ways to ompute solutionsto (1.1) and (1.2) [1, 58℄. It is obvious that the large kernels of the di�erential opera-tors url and div pose the main hallenge: A straightforward appliation of iterativetehniques developed for the symmetri positive de�nite ase is doomed, beause thesemethods single out the smallest eigenvalues and will invariable hurn out kernel ve-tors in the end. However, as � > 0 is requested, these are not the desired answer. Weare left with the task of steering the iterations away from the kernels.One option is regularization, i.e. adding a term orresponding to a weak ver-sion of grad div � for (1.1) and url url � for (1.2) to the di�erential operator (f.[1, Set. 4.1℄ and [8℄). This will make the kernel \visible" and onvert the probleminto a standard positive de�nite one. Thus it beomes amenable to \shift-and-invert"



Multilevel Method for Mixed Eigenproblems 3tehniques ombined with, e.g., an impliitly restarted Lanzos method. The result-ing inde�nite linear systems of equations an be solved by means of Krylov-subspaemethods, whose onvergene will degrade for very large problems, however.An alternative option is projetion of approximate eigenvetors onto a omple-ment of the kernels. This is the gist of our method, whih we all projeted preon-ditioned inverse iteration (PPINVIT). The idea to forgo regularization in favor ofprojetions is fairly natural. For instane, it is used in [57℄ for 2D problems arising inwaveguide design. Yet, little is gained, unless a fast projetions and good preondi-tioners are at our disposal.Reently, multilevel methods for the solution of H(url; 
)- and H(div; 
)-ellipti boundary value problems have beome available [3, 38, 40℄, if disretizationis based on speial onforming �nite elements. The goal of this paper is to demon-strate how they an be forged into eigenproblem solvers featuring multigrid eÆieny.The key idea is to ombine the subspae variant of preonditioned inverse iteration[50℄ with an inexat multigrid projetion onto the orthogonal omplements of thekernels.As the approah ruially hinges on partiular properties of the �nite elements,those are reviewed in the next setion. Then we give a detailed desription of the algo-rithm, omplete with projetion ontrol and termination riteria. The fourth setionis dediated to some theoretial investigations into the onvergene of the method.Yet, we have not sueeded in providing a omprehensive theoretial analysis. Toompensate for this, we report quite a few numerial experiments in the �nal setion.They give evidene of the eÆay and satisfatory performane of the method forsome typial large eigenvalue problems.2. Disrete eigenvalue problems. The Galerkin-disretization starts from theweak form of the eigenvalue problems: In the ase of (1.1) we seek u 2H�D (url; 
),� > 0 suh that(� url u; url v)0 = � (u;v)0 8v 2H�D (url; 
) : (2.1)If (1.2) is of onern the weak form reads: Seek u 2H�D (div; 
), � > 0 suh that(� divu; divv)0 = � (u;v)0 8v 2H�D (div; 
) : (2.2)As usual, we adopt the notation (�; �)0 for the L2(
)-inner produt. By testing (2.1)with gradients and (2.2) with urls we observe that solutions u are either weaklydivergene-free or weakly url-free. AsH�D (url; 
)\H(div; 
) andH�D (div; 
)\H(url; 
) are both ompatly embedded in L2(
) [42℄, the Riesz-Shauder theoryguarantees the existene of inreasing sequenes of nonzero eigenvalues �1 � �2 � : : : .Sine the bilinear forms on the left hand sides of (2.1) and (2.2) are symmetri, wean also onlude that the orresponding eigenspaes are L2(
)-orthogonal.This arries over to the disrete eigenfuntions obtained through a Galerkin-disretization of (2.1) and (2.2). In partiular, we use onforming �nite elements basedon a hexahedral or simpliial triangulation Th = fTigi of 
. Its faes and edges haveto be equipped with an interior orientation. Then, using the onstrutions proposedby N�ed�ele in [49℄, we obtain the �nite element spaes W1p(Th) � H(url; 
) andW2p(Th) �H(div; 
) of any polynomial order p 2 N0 . Details and desriptions of thedegrees of freedom are given in, e.g. [19, 31, 47, 49℄. Dirihlet boundary onditions anbe enfored by setting the degrees of freedom (d.o.f.) on �D to zero.



4 R. Hiptmair and K. NeymeyrIn the ase of lowest polynomial order p = 0 the �nite elements are either knownas Whitney-forms [14℄ or, in the engineering literature, as edge elements (H(url; 
)-onforming sheme) and fae elements (H(div; 
)-onforming sheme), respetively.They owe these names to the de�nition of their d.o.f., whih are given by path integralsalong edges of the mesh and ux integrals over its faes, respetively( W10 7! Ruh 7! Re uh � te d�; e edge ; ( W20 7! Ruh 7! Rf uh � nf dS; f fae :The �nite element spaes form aÆne equivalent families, if speial transformationsare used [39℄. This makes it possible to show approximation properties (f. [24℄) andthe inverse inequalitieskurl uhk0 �Ch�1 kuhk0 8uh 2W1p(Th) ;kdivuhk0 �Ch�1 kuhk0 8uh 2W2p(Th) ;where h := maxfdiamT; T 2 Thg is the meshwidth and C > 0 are generi onstants.By this terminology we mean that C may only depend on 
;�D; �; p, and the shape-regularity of the �nite element mesh. On the other hand, the value of generi onstantsC may hange between di�erent ourrenes.Despite the glaring di�erenes in their de�nitions, the �nite element spaes forH(url; 
) and H(div; 
) introdued above are losely related. As disussed in [16,17, 39℄, they all an be viewed as spaes of disrete di�erential forms. This is therationale behind our deision to treat both (1.1) and (1.2) in a ommon framework.In a sense, we will adopt the ommon notation Vh for bothW1p(Th) orW2p(Th) withsuitable Dirihlet boundary onditions imposed.Hitherto, disrete di�erential forms supply the only onforming �nite elementdisretization of (2.1) and (2.2) that an steer lear of so-alled spurious modes. Forinstane, if one uses H1(
)-onforming �nite elements to disretize the Cartesianomponents of the vetor�elds u, the disrete spetrum may feature eigenvalues thatare not related to an eigenvalue of the ontinuous problem [12, 15, 30℄. On the on-trary, in reent years rigorous arguments have been found, why disrete di�erentialforms ensure a orret approximation of the spetrum [10, 13, 21, 22, 30, 48℄. For qua-siuniform and shape-regular families of meshes onvergene of the eigenvalues will bequadrati in the meshwidth [21℄ under mild assumptions on the smoothness of theeigenfuntions.A key role in the onvergene theory is played by disrete potentials. They referto an exeptional property of disrete di�erential forms, namely that they give riseto analogues to de Rham's exat sequenes in a purely disrete setting [11, 17℄. Inpartiular, for ontratible 
, �D = �
 or �N = �
,fuh 2W1p(Th); url uh = 0g = gradW0p (Th) ; (2.3)fuh 2W2p(Th); divuh = 0g = urlW1p(Th) ; (2.4)where W0p (Th) stands for the spae of ontinuous �nite element funtions, pieewisepolynomial of degree p+ 1 over Th, the onventional Lagrangian �nite elements (see[23℄). A proof of these identities an be found in [39℄. Now it is lear, why W0p (Th)and W1p(Th) have been dubbed spaes of disrete potentials. Those will be denotedby Sh and Gh : Sh 7! Vh is the related di�erential operator mapping into the kernelof Ah, that is, Gh := grad or Gh := url.



Multilevel Method for Mixed Eigenproblems 5In the ase of omplex topologies and Dirihlet boundary onditions on parts of�
, the kernels of the di�erential operators are no longer ompletely given by suit-able disrete potentials. What is still missing are low-dimensional spaes of harmonivetor�elds, H1(Th) � W10(Th) and H2(Th) � W20(Th), whose dimensions dependon the topology of 
 and the arrangements of the onneted omponents of �D. Forinstane, if �D = �
 the dimension of H1(Th) is equal to the number of onnetedomponents of �
. A basis for H1(Th) is given by the gradients of pieewise linearontinuous funtions that assume the value 1 on one onneted omponent of �D andvanish on the other. Evidently, this basis an be onstruted with little e�ort. In thease of Neumann boundary onditions throughout, dimH1(Th) is equal to the num-ber of homology lasses of boundary yles that are bounding relative to 
. To �nd abasis, we assoiate a utting surfae to eah homology lass and ompute the gradientof a pieewise linear funtion that is ontinuous exept for a jump of height 1 arossthe utting surfae [2℄. The surfaes an be determined by means of graph-theoretialgorithms [34℄. In ase of mixed boundary onditions the situation is more involved[29℄, but for onrete geometries the harmoni vetor�elds an usually be found easily.In the sequel we will write Hh for a spae of harmoni vetor�elds and will take forgranted that a basis fh1; : : : ;hqg of Hh has been omputed.In sum, we fae the abstrat disrete eigenvalue problem: Seek uh 2 Vh suh thata(uh;vh) = � (uh;vh)0 8vh 2 Vh ; (2.5)where a(�; �) stands for the positive semide�nite bilinear form from (2.1) or (2.2). Weassoiate operators Ah : Vh 7! V 0h and Mh : Vh 7! V 0h with the bilinear forms in(2.5), whih onverts it into an operator equationAhuh = �Mhuh : (2.6)The basis of Vh dual to the set of degrees of freedom is alled the nodal basisfb�g�2J , with J a suitable index set. The basis funtions are loally supported andsatisfy kb�k0 � C diam supp(b�) kb�kA � 2 J ; (2.7)with k�kA the energy-seminorm indued by a(�; �). Given the nodal basis, (2.6) analso be read as a matrix equation, Ah being the sti�ness matrix and Mh the massmatrix, whih are both large and sparse.We follow the onvention that funtions will be given Roman symbols, whereasGreek letters are used for funtionals. Those related to the base spae Vh will begiven bold tokens, whereas entities from the potential spae Sh are printed in plainstyle.3. Projeted preonditioned inverse iteration (PPINVIT). Standard in-verse iteration (without shift) for an eigenvalue problem Ahuh = �Mhuh with sym-metri positive de�nite operators Ah : Vh 7! V 0h, Mh := Vh 7! V 0h omputes a newiterate xnewh 2 Vh from the old xh 2 Vh throughyh = �A�1h Mhxoldh ; xnewh := yh= kyhk0 ;for some � 6= 0. First, observe that the hoie of � is immaterial. Therefore, we mayset � = r(xh), where r(xh) = hAhxh;xhihMhxh;xhi (3.1)



6 R. Hiptmair and K. Neymeyrdenotes the Rayleigh quotient and h�; �i the duality pairing. This hoie of � has thee�et that yh � xh onverges to zero when r(xh) approahes the smallest eigenvalue.Thus we reover the typial situation, where a orretion is determined by solving alinear system with a small residual as right hand side. This paves the way for theappliation of a preonditioner Bh : V 0h 7! Vh, an approximate inverse of Ah, toompute yh. We arrive at the update formulayh = xh �Bh(Ahxh � r(xh)Mhxh) ; xnewh := yh= kyhk0 ; (3.2)whih is the basi building blok for the algorithm of the preonditioned inverseiteration [52℄. The iterates will onverge linearly to an eigenvetor belonging to thesmallest eigenvalue. The theoretially possible but unlikely ase that preonditionedinverse iteration gets stuk in a higher eigenvalue does not take plae in pratiethanks to rounding errors. If an invariant subspae orresponding to the s smallesteigenvalues is desired, we an resort to the subspae variant. After a Rayleigh{Ritzprojetion, it updates eah of the s Ritz vetors x1h; : : : ;xsh aording to (3.2) withr(xh) replaed by the Ritz-values [18, 50℄.Let us return to the atual setting, in whih Ah is only positive semide�nite. Then,it is natural to demand that yh is ontained in the L2(
)-orthogonal omplement ofKer(Ah), as this is satis�ed for any eigenvetor belonging to a nonzero eigenvalue.In other words, the (exat) inverse iteration should be based on the pseudo-inverseAyh : V 0h 7! Vh. Then xh will onverge to an eigenvetor orresponding to �1 as longas the starting vetor (for the ase of exat arithmeti) is not orthogonal to thateigenvetor.Well, the pseudo-inverse Ay is elusive and has to be approximated. We suggestto do so by means of a plain multigrid method. It relies on a hierarhy of nestedmeshes T0 � T1 � : : : � TL := Th and the orresponding �nite element spaesV0 � V1 � : : : � VL := Vh. The natural way to reate suh meshes is throughsuessive re�nement of an initial rather oarse mesh T0, as desribed in [6, 9℄ fortetrahedral meshes. The re�nement strategies make sure that the shape regularity ofT0 is almost preserved for all �ner meshes.We instantly get a sequene of operators Al : V l 7! V 0l generated by the bilinearform a(�; �) on V l. The embedding of the spaes V l�1 � V l spawns the anonialprolongation operators Il : V l�1 7! V l, l = 1; : : : ; L. Their adjoints I�l : V 0l 7! V 0l�1are known as restritions [37, Set. 3.6℄. These operators are purely loal and heaplyimplemented [40℄.The de�nition of the symmetri multigrid preonditioner is based on the reursivealgorithm skethed in �gure 3.1. There RTl is de�ned by 
�l; RTl �l� = h�l; Rl�li,�l;�l 2 V 0l. Then the appliation of the multigrid preonditioner Bh : Vh 7! V 0h anbe realized as followsh := Bh�h () h := 0; mgyle(L; h;�h) : (3.3)The operators Rl : V 0l 7! V l ourring in the algorithm are onventional smoothingoperators on level l, l = 1; : : : ; L. We will only onsider point smoothers of Jaobi- orGau�-Seidel-type. For the latter, one sweep on level l, l = 1; : : : ; L, with initial guessul 2 V l and right hand side �l 2 V 0l readsforeah(� 2 Jl) f ul  ul + h�l;ulia(b�;b�) � b� g :



Multilevel Method for Mixed Eigenproblems 7mgyle< A > (int l,referene ul 2 V l, onst �l 2 V 0l)f if(l == 0) f u0 = Ay0�0 gelse f// Pre-smoothingfor(int i = 0 ; i < �1 ; + + i) f ul  ul +Rl(�l � Alul) g// Coarse grid orretion�l := �l �Ahul�l�1 := I�l �ll�1 := 0 2 V l�1for(int i = 0 ; i < � ; + + i) mgyle< A >(l � 1,l�1,�l�1)ul  ul + Ill�1// Post-smoothingfor(int i = 0 ; i < �2 ; + + i) f ul  ul +RTl (�l �Alul) gggFig. 3.1. Multigrid algorithm de�ning the preonditioner Bh. The parameters �1; �2; � 2 Nde�ne the type of the yle. For � = 1 we get a V (�1; �2)-yle, for � = 2 a W (�1; �2)-yle.Though Ah is singular, relaxation will go smoothly, as (2.7) guarantees a(b�;b�) >0. However, this innoent looking proedure disrupts everything, beause b� doesnot exatly belong to Ker(Al)?. Thus, the ation of Bh will invariably introdueomponents in Ker(Ah) into the iterates. Eventually the iterates might tumble intothe kernel.To prevent this, we have to weed out the kernel ontributions as soon as they areintrodued. Formally, this an be done by projeting yh from (3.2) onto Ker(Ah)?.Fortunately, if 
 is ontratible, the representation of Ker(Ah) through disrete po-tentials aording to Ker(Ah) = GhSh enables us to express the L2(
)-orthogonalprojetion Ph : V 7! Ker(A)? throughPh := Id�GhT yhG�hMh ; (3.4)where Th : Sh 7! S 0h is the operator assoiated with the bilinear formd : S � S 7! R ; d(uh; vh) = (Ghuh; Ghvh)0 ; uh; vh 2 Sh : (3.5)Yet, the exat omputation of T yh�h for some �h 2 S 0h is all but impossible. Just reallthat in the ase of the eigenvalue problem inH(url; 
) the operator Th is the disreteLaplaian, i.e. in general desribed by a huge sparse sti�ness matrix. Therefore, weannot help using an approximate pseudo-inverse also in this ase. A multigrid shemeanalogous to the one outlined in �gure 3.1 omes handy, this time to be onduted inthe potential spae with the operators Al replaed by their ounterparts Tl : Sl 7! S 0l .This will yield an approximate projetion ~PhePh := Id�GhChG�hMh ; (3.6)where Ch stands for the approximate (pseudo-)inverse of Th furnished by the multigridyle. Reassuringly, we do not have to worry about pollution in Ker(Gh) this time,



8 R. Hiptmair and K. Neymeyrbeause in (3.4) the operator Gh is applied to the result, suppressing any kernelomponent.If we have to take into aount harmoni vetor�elds inHh := Span fh1; : : : ;hqg,their basis should be approximately orthogonalized to GhSh. This an be done oneand for all before the atual eigenvalue omputations utilizing a few steps of theapproximate multigrid projetion ePh. For the sake of eÆieny, a nested iterationapproah should be employed. Eventually, the basis funtions should be L2(
)-orthonormalized to eah other by solving a small linear system of equations. Ifeh1; : : : ; ehq are the funtions thus obtained, eHh := Spanneh1; : : : ; ehqo will be an-other suitable spae of harmoni vetor�elds. Given this preproessing, orthogonalityto eHh an be easily enfored.The �nal algorithm implementing the inexat projetion is given in �gure 3.2(right). We point out that Gh is a loal operator, too, whose matrix representationan be derived from the embedding GhSh � Vh [40, Set. 6℄. Let us eluidate thisfor edge elements: Assuming nodal bases of Vh and Sh the evaluation of Gh boilsdown to simply distributing the nodal values from verties (to whih d.o.f. of Sh areassoiated) to edges, taking into aount their orientations by means of weights +1or -1.In the end, inorporating the total ation of projet into ~Ph, we get the followingupdate formula for an approximate eigenvetoryh = ~Ph(Id�Bh(Ah � �Mh)) ~Phxh ; xnewh = yh= kyhk0 : (3.7)Cast into an algorithm, this yields the proedure update displayed in �gure 3.2 (left).update(referene xh 2 Vh,� 2 R)f projet(xh)�h := Ahxh ;  h :=Mhxh�h := �h � � �  hh := 0 2 Vhmgyle< A >(L,h,�h)xh  xh � hprojet(xh)xh  xh=jxhjg
projet(referene xh 2 Vh)f // Treat harmoni vetor�eldsfor(int i = 1; i � q; + + i)f xh  xh � �ehi;xh�0 � ehi g�h :=Mhxh�h := G�h�hh = 0 2 Shmgyle< T >(L,h,�h)xh  xh �GhhgFig. 3.2. Update proedure for the projeted preonditioned inverse interationIt is hazardous to replae � in (3.7) by the plain Rayleigh quotient (3.1), beausesigni�ant kernel omponents might remain after the inexat projetion. If we set� = r(xh), we might enounter �� � though Ahxh = �MhPhxh, i.e. the omponentsof xh in Ker(Ah)? already provide the desired eigenvetor. Guided by the idea that thesheme should ome lose to inverse iteration in the omplement Ker(Ah)? we shouldhoose � = r?(xh) = hAhxh;xhi = (Phxh; Phxh)L2(
). In pratie, we are denied thisoption as Phxh is not available. However, we still want a replaement for r? that isinsensitive to kernel omponents. A promising andidate is the \two-step Rayleigh



Multilevel Method for Mixed Eigenproblems 9quotient" rQ(x) = 
AhM�1h Ahxh;xh�hAhxh;xhi ; (3.8)with rQ(x) � r?(xh) � r(xh). Obviously, it yields an eigenvalue, if we have alreadyhit an eigenvetor in Ker(Ah)?. Two issues arise, nevertheless: First, there is a riskof breakdown, if Ahxh = 0. This means that the urrent approximate eigenvetorlies in Ker(Ah), whih hints at inadequate approximate projetions. A way to detetand ure this ondition will be disussed in setion 5. The seond problem is that theevaluation of (3.8) entails the solution of a linear system Mhzh = Ahxh for the massmatrix Mh. As Mh is well onditioned, a few steps of an iterative method (CG,Gau�-Seidel) will give a reasonable approximate solution. Moreover, if (�;xh) is alreadylose to an eigenvalue/eigenvetor pair, �xh is an exellent initial guess.With all building bloks in plae, we an now state the ruial update step ofthe algorithm for the omputation of the s, s 2 N, smallest nonzero eigenvalues andorresponding eigenvetors of (2.6). Its details are given in �gure 3.3. The proe-dure ppinvit step is meant to improve on approximations �i and xih, i = 1; : : : ; s, foreigenvalues and eigenvetors.ppinvit step (referene (�1; : : : ; �s)T 2 Rs , referene (x1h; : : : ;xsh) 2 (Vh)s)f // Ritz-projetionfor(i = 1 ; i � s ; + + i) f�ih := Ahxih; zih = �ixih; gm < Mh > (zih;�ih)aii := 
�ih; zih�; mii := 
�ih;xih�for(j = 1 ; j < i ; + + i) f aij = aji := D�jh; zihE; mij = mji := D�jh;xihE gg// Rayleigh{Ritz proedureAs := (aij) 2 Rs;s ; Ms := (mij) 2 Rs;s ;Find Y 2 Rs;s and Ritz values � = diag(�1; : : : ; �s) suh that AsY = YMs�// Ritz vetors(x1h; : : : ;xsh) (x1h; : : : ;xsh) � Y// Approximate projeted inverse iterationfor(i = 1 ; i � s ; + + i) f update(xih; �i) gg Fig. 3.3. One step of the subspae variant of the algorithm for projeted preonditioned inverseiteration. gm < Mh > (zh;�h) refers to m 2 N CG-steps for the solution of Mhzh = �h.The disussion of termination riteria is postponed to setion 5. Initial guessesfor the eigenvetors an easily obtained through nested iteration by prolongatingapproximate eigenfuntion from oarser grids.Remark. For positive de�nite operators the Rayleigh{Ritz method is often appliedto a modi�ed/enlarged subspae (onsisting of the atual subspae, the atual searhdiretions and possibly the old iterates). This is known to improve onvergene [44, 45℄if Ah > 0. Yet, this trik is not advisable for the semide�nite problem, beause amassive ampli�ation of kernel omponents might our.



10 R. Hiptmair and K. Neymeyr4. Convergene. The theoretial examination of the algorithm starts with theL2(
)-orthogonal deomposition and dual polar deompositionVh = X h 
Zh ; Zh := Ker(Ah) ; V 0h = X 0h 
Z 0h : (4.1)With respet to the splittings (4.1) the operators an be written in blok form. For asymmetri preonditioner it readsBh = �B?? B0?BT0? B00� : X 0h 
Z 0h 7! X h 
Zh ; (4.2)and for the other operatorsAh = �A? 00 0� ; Mh = �M? 00 M0� ; Ayh = �A�1? 00 0� ; ePh = �Id? 00 P0�These formulas are immediate from the de�nition of the operators and the propertiesof the splittings. Be aware that B0? 6= 0 auses the pollution by kernel omponents,and P0 6= 0 hints at an inexat projetion.Using AhAyh +Q�h = Id�h, where Qh : Vh 7! Zh is the L2(
)-orthogonal proje-tion, we obtain from (3.7) with � = rQ(xh)yh = ePh �(Ih �BhAh)(Ih � �AyhMh) + �BhQ�hMh + �AyhMh� ePhxh :Splitting yh = y0 + y?, xh = x0 + x?, x0;y0 2 Zh, y?;x? 2 X h, and plugging inthe blok forms of the operators leads to�y? � zhy0 � = �Id? 00 P0� �Id?�B??A? 0�BT0?A? Id0��Id?� �A�1? M? 00 Id0�++�0 �B0?M00 �B00M0�!�Id? 00 P0��x?x0�with zh := �A�1? M?x?. This results in a kind of error propagation equation�y? � zhy0 � = �Id? �B??A? �B0?M0P0�P0BT0?A? P0(Id0 + �B00M0)P0��x? � zhx0 � : (4.3)Note that (zh; 0)T is what an exat inverse iteration for the pseudo-inverse would giveus before saling. Thus (4.3) reets how muh the projeted preonditioned inverseiteration di�ers from an exat inverse iteration. Next, we aim at quantitative estimatesof this deviation. To this end we seek bounds for norms of the blok-operators in (4.3).Various norms need to be onsidered for operators Xh : Vh 7! VhkXhk0!0 := supvh2Vh kXhvhk0kvhk0 ; kXhkZ!0 := supvh2Zh kXhvhk0kvhk0 ;kXhkA!A := supvh2Vh kXhvhkAkvhkA ; kXhkA!0 := supvh2Vh kXhvhk0kvhkA ;kXhkZ!A := supvh2Zh kXhvhkAkvhk0 :



Multilevel Method for Mixed Eigenproblems 11In order to bound the operator norm kI �B??A?kA!A we remember that k�kA is theenergy-seminorm inH(url; 
) andH(div; 
), respetively. In other words, this normagrees with the onvergene rate of the multigrid method in the energy-seminorm. In[38, 40, 41℄ it was shown that this onvergene rate is bounded away from 1 indepen-dently of the number L of grid levels involved in the multigrid sheme. This justi�esthe assumption kId? �B??A?kA!A �  < 1 : (A1)In fat numerial experiments give evidene that we an expet  to be smaller than0:5, at worst.Next, we have to gauge the impat of the inexat projetion. Again, we an relyon theoretial results and pratial experiene with multigrid methods to justifykGh(Idh � ChTh)uhk0 � � kGhuhk0 8uh 2 Sh (A2)for � < 1 uniformly in L. Note that � is the onvergene rate of the iterative solver inpotential spae. The pratial range for � will be the same as for . From (A2) andTh = G�hMhGh we onlude�max(Gh(T yh � Ch)G�hMh) = �max(G�hMhGh(T yh � Ch)) = �max(Idh � ThCh) = � :Beause of (Idh �GhT yhG�hMh)x0h = 0 for x0h 2 Zh, this teahes us thatP0x0h0 = x0h �GhChG�hMhx0h0� (Idh �GhT yhG�hMh +Gh(T yh � Ch)G�hMh)x0h0� Gh(T yh � Ch)G�hMhx0h0 � � x0h0 : (4.4)The remaining terms involving the multigrid preonditioner will be takled under therestritive assumption of uniform re�nement. That is, we take for granted a geometriderease of the meshwidths aording to hl � 2�l.Under these irumstanes, the bilinear form sl : V l � V l 7! R that de�nes thesmoother Rl via sl(Rl�l;vl) = �l(vl) 8vl 2 V l; �l 2 V 0lful�lls Ch�2l (ul;ul)0 � s(ul;ul) � Ch�2l (ul;ul)0 8ul 2 V l :For the point smoothers that we have in mind, this is a onsequene of (2.7). Inpartiular, s(�; �) turns out to be positive de�nite. Then the Cauhy-Shwarz inequalitygives for x0l 2 ZlRlMlx0l 20 � Ch2l s(RlMlx0l ; RlMlx0l ) = Ch2l supwl2Vl s(RlMlx0l ;wl)2s(wl;wl)� Ch4l supwl2Vl 
Mlx0l ;wl�2kwlk20 � Ch4l x0l 20 ;



12 R. Hiptmair and K. Neymeyrfrom whih we inferkRlMlkZ!0 � Ch2l and kRlMlkZ!A � Chl : (4.5)The latter estimate is a onsequene of the inverse inequalities (2) that involvea(ul;ul) � Ch�2l kulk20 : (4.6)The same arguments revealkRlAlxlk20 � Ch2l s(RlAlxl; RlAlxl) = Ch2l supwl2Vl s(RlAlxl;wl)2s(wl;wl)� Ch4l supwl2X l hAlxl;wli2kwlk20 � Ch2l kxlk2A :The inverse inequality in V l is onealed in the �nal estimate. Eventually,kRlAlkA!0 � Chl and kRlAlkA!A � C : (4.7)The estimates arry over to RTl , of ourse. Now we are in a position to examine thefull multigrid yle. For the sake of simpliity we on�ne ourselves to a V(1,1)-yle:Lemma 4.1. Assume that the smoother alone provides a onvergent iteration inthe k�kA-seminorm. ThenkBlAlkA!0 � KA ; kBlMlkZ!0 � K0 ; kBlMlkZ!A � K? ;with onstants KA > 0, K0 > 0 and K? > 0 that depend on the shape-regularity ofthe meshes T0; : : : ; TL, but not on l.Proof. The reursive nature of the multigrid algorithm suggests that we study twosubsequent levels l and l � 1. For ease of notation, we will use a subsript h to referto level l (�ne grid), and H will tag entities assoiated with level l � 1 (oarse grid).We retrae the single steps of the algorithm of �gure 3.1 and start with �h := Ahxhfor some xh 2 Vh. Presmoothing takes it to wh := RhAhxh sine a zero ini-tial guess has to be used. Afterwards, the oarse grid orretion will result inH := BHI�hAh(xh�wh). Then, with PHh : Vh 7! XH denoting the a(�; �)-orthogonalprojetion, we infer from I�hAh = AHPHhH = BHAHPHh (Idh �RhAh)xh :As the multigrid method is supposed to onverge in the k�kA-seminorm,kIdH �BHAHkA!A < 1 is guaranteed, so thatkBHAHkA!A � 2 : (4.8)The smoother alone also provides a onvergent iteration, i.e kIdh �RhAhkA!A < 1,suh that kHk0 � kBHAHkA!0 kxhkA ; kHkA � 2 kxhkA :With uh := wh + IhH , whih ful�lls due to (4.7)kuhk0 � (kBHAHkA!0 + Ch) kxkA ; kuhkA � 4 kxhkA ;



Multilevel Method for Mixed Eigenproblems 13we an express the result of post-smoothing asBhAhxh = uh +RTh (Ahxh �Ahuh) = wh + uh �RThAhuh :Again, we invoke (4.7) and seekBhAhxhk0 � (kBHAHkA!0 + Ch) kxkA+ Ch kuhkA � (kBHAHkA!0+ Ch) kxkA :Consequently, kBhAhkA!0 � kBHAHkA!0+Ch. Taking into aount that B0 = Ay0,i.e. kBhAhkA!0 = 0, and the geometri derease of the meshwidth, this ensureskBhAhkA!0 � KA, for KA > 0 independent of the level.Analogous onsiderations an be arried out with �h :=Mhx0h for some x0h 2 Zh.Presmoothing yields wh := Rh�h, and after the yle on the oarse grid we end upwith H = 1 + 2 := BHI�hMhx0h +BHI�hAhwh :As I�hMh = MHQHh , where QHh : Vh 7! VH is the L2(
)-orthogonal projetion, weget for the �rst ontribution to Hk1k0 � kBHMHkZ!0 x0h0 ; k1kA � kBHMHkZ!A x0h0 :Similarly, from I�hAh = AHPHh , (4.5) and (4.8) follows thatk2k0 � BHAHPHh wh0 � kBHAHkA!0 kwhkA � Ch kBHAHkA!0 x0h0 ;k2kA � BHAHPHh whA � kBHAHkA!A kwhkA � Ch x0h0 :In sum, based on earlier estimates,kHk0 � (kBHMHkZ!0 + ChKA) x0h0 ;kHkA � (kBHMHkZ!A + Ch) x0h0 :Next we onsider the oarse grid orretion uh = wh + IhH . As the prolongation isan identity mapping in disguise, the following estimates are straightforward:kuhk0 � �kBHMHkZ!0 + ChKA + Ch2� x0h0 ;kuhkA � (kBHMHkZ!A + Ch) x0h0 :The postsmoothing results inBhMhx0h = uh +wh �RhAhuh :By (4.7) and (4.8) we knowkRhAhuhk0 � Ch kuhkA ; kRhAhuhkA � C kuhkA :We end up with the estimatesBhMhx0h0 � �(1 + Ch) kBHMHkZ!0 + Ch((1 + Ch)KA + Ch2 + Ch3� x0h0 ;BhMhx0hA � (kBHAHkZ!A + Ch) x0h0 :



14 R. Hiptmair and K. NeymeyrOn the oarsest grid l = 0, we have B00M0 = 0 and B0?M0 = 0. Then the geometriderease of the meshwidth leads to the assertion of the lemma for kBlMlkZ!A. Forthe other norm, we observekBhMhkZ!0 � (1 + Ch) kBHMHkZ!0 + Ch :In losed form this amounts tokBlMlkZ!0 � C lXi=0 lYj=i(1 + C2�j) � 2�i :As lQj=i(1+C2�j) � exp(2C), the bottom line is that kBlMlkZ!0 is uniformly bounded.Now, we an onvert (4.3) into the estimates�y?h � �A�1? M?x?h Ay0h0 � � �  �K?�KA� �2(1 + �K0)��x?h � �A�1? M?x?h Ax0h0 � :(4.9)All the onstants are basially independent of the meshwidth and the number L oflevels involved in the multigrid solvers. Heuristi insights into the signi�ane of (4.9)an be gained from the theory of preonditioned inverse iteration in the positivede�nite ase [52, 53℄. If, with � = r?, for some positive � < 1y?h � �A�1? M?x?h A � � x?h � �A�1? M?x?h A (4.10)the PINVIT onvergene theory gives some lengthy, sharp estimate for the Rayleighquotient r? of the new iterate y?h demonstrating that PINVIT onverges at leastlinearly to the eigenvalue �i. Here, we ite only the asymptotially sharp estimatefrom [51℄. In the ase of a subspae iteration let �j (�0j) be the j{th Ritz value (orderedby magnitude) of a given (and the next) subspae and let �i and �i+1 be the nearesteigenvalues enlosing �j . Then�i;i+1(�0j) � �� + (1� �) �i�i+1�2�i;i+1(�j) ; �i;i+1(�) := � � �i�i+1 � � : (4.11)In the PINVIT theory, � is the spetral radius of its error propagation matrix. Forthe best multigrid or domain deomposition preonditioners � is bounded away from1 independently on the meshwidth. Having in mind the onvergene fator presentedin Eq. (4.11), we onlude that PINVIT onverges mesh-independently. To illustratethese results onsider the disrete Laplaian on [0; �℄2 whose smallest eigenvalues(with multipliity) tend to 2; 5; 5; 8; 10; 10; 13; 13; : : : . Figure 4.1 displays upper bounds�(�;�), f. Theorem 2.1 in [50℄, for the relative derease of �0j towards the next smallereigenvalue �i, i.e. �0j � �i�j � �i � �(�;�):In the semide�nite ase Eq. (4.9) applies to PINVIT in Ker(A)? only for theunrealisti hoie of a perfet projetion, i.e. � = 0. For a small � > 0 the iterates



Multilevel Method for Mixed Eigenproblems 15

2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Γ=0

Γ=0.1

Γ=0.2

Γ=0.3

Γ=0.4

Γ=0.5

Γ=0.6

Γ=0.7

Γ=0.8

Γ=0.9

Γ=1

λ

Θ(λ,Γ)         

Fig. 4.1. Estimates �(�;�) for �h on [0; �℄2.in Ker(A)? will inevitably be perturbed by the term �B0?M0P0x0 in Eq. (4.3).Nevertheless, (4.10) may hold with � < 1 throughout the iteration. Then onvergeneaording to the PINVIT theory is guaranteed (apart from the minor modi�ation ofreplaing r? by rQ). Unfortunately, if x?h � �A�1? M?x?h A � x0h0 the onstantin (4.10) may blow up. However, (4.9) teahes that in this ase a signi�ant redutionof the kernel omponent will be ahieved, provided that � is suÆiently small. Hene,� > 1 might happen in a single step, but in the next step (4.10) is likely to hold witha rather small �. In other words, for a � � 1 the kernel omponents are damped outin the ourse of the iteration. Therefore, the perturbations beome more and moreinsigni�ant. This e�et is elusive and we have not sueeded in giving a rigorousanalysis.
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Let us study as a modelsystem the eigenvalue problemfor Ah = diag(2; 5; 8; 0) with = 0:5. Then the preondi-tioner is a 4 � 4 matrix. Wetake bmax as the bound for theabsolute value of B00 and forthe A{norm of B0?. Note thatthe low dimension of the modelproblem is motivated by the fatthat preonditioned inverse it-eration takes its extremal on-vergene in a 2D spae whihis spanned by those eigenve-tors whose orresponding eigen-values enlosing the Rayleighquotient of the atual iterate.Moreover, as a result of [52℄ theassumption that all eigenvaluesare of the algebrai multipliity1 is non-restritive. In �gure 4.2



16 R. Hiptmair and K. Neymeyrthe maximal ratio jx0hj=kxhk0 after 10 steps of PPINVIT is displayed in a ontour plotfor � 2 [0; 1℄ and bmax 2 [0; 1℄. For eah point of the underlying 50� 50 mesh 150000ombinations of random preonditioners and random start vetors with a �xed initialkernel omponent have been tested. For � < 0:2 the kernel is damped out very wellindependently on the hoie of bmax.
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Fig. 4.3. Components of the iterate xh for the model problem. Components to (�1; �2; �3; 0)orrespond to symbols (o; x;+; �). Left: 1st step of PPINVIT Right: 4th step of PPINVIT.The omponents of the iterates within the 1st and 4th step of PPINVIT in thease of poorest onvergene an be looked up in �gure 4.3. For 107 ombinations ofrandom preonditioners ( = 0:5, � = 0:25, bmax = 0:2) the omponents of thosevetors whih are responsible for the poorest derease of the Rayleigh quotient aredisplayed against their two-step Rayleigh quotient. While in the �rst step of PPINVITthe kernel omponents appear as the dominating part, we identify in the 4th stepwithin the interval [�i; �i+1℄ the ith and i + 1th omponents as the prevailing ones.Suh a result does not ome as a surprise, and an be understood by the distintivefeature of preonditioned inverse iteration to take its extremal onvergene in exatlythis 2D spae. The kernel has all but disappeared. Thus, �gure 4.3 highlights a keytrait of PPINVIT: Convergene is brought about by the subtle interation of multiplesteps.Some quantitative onlusions an also be drawn from (4.9).Theorem 4.2. If � := �Q < �� for all steps of the iteration and the initial iteratexh satis�es x0h0kxhkA � (1� )2��K?then this will hold for all other iterates, provided that the approximate projetion issuÆiently aurate.Proof. Given xh = x0h + x?h 2 Vh, x0h 2 Zh, x?h 2 X h, omputing yh = y0h + y?haording to (4.3), we obtain from (4.9)y?h A �kzhkA �  x?h � zhA � ��K?� x0h0 ;y0h0 �KA� x?h � zhA + �2(1 + ��K0) x0h0 ;



Multilevel Method for Mixed Eigenproblems 17where zh := rQ(xh)A�1? M?x?h . This de�nition immediately implieszh � x?h 2A = kzhk2A � 2 
A?z?h ;x?h �+ x?h 2A= kzhk2A � (2rQ(xh)r?(xh) � 1) x?h 2A :Owing to the Cauhy-Shwarz-inequality, we have rQ(xh) � r?(xh) and thuszh � x?h A � kzhkA ; kzhkA � x?h A (4.12)The above estimates an be blended intoy0h0y?h A � KA� x?h � zhA + �2(1 + ��K0) x0h0kzhkA �  x?h � zhA � ��K?� kx0hk0� KA� + �2(1 + ��K0)x0h0=kzhkA(1� )� ��K?�kx0hk0=kzhkAFrom (4.12) and the assumptions of the theorem, we onludex0h0kzhkA � (1� )2��K?� =) (1� )� ��K?� x0h0kzhkA � 12 (1� ) ;whih implies y0h0y?h A � �� 2KA1�  + 1 + ��K0��K? � :The ratio y0h0=y?h A will remain below the threshold (1� )=2��K?�, if�2 � (1� )24��K?KA + (1� )(1 + ��K0) :This states the ondition on the auray of the approximate projetion. As the ratioin the statement of the theorem is not a�eted by saling, the proof is �nished.The previous theorem guarantees that the iterates annot plunge into the kernel,if a suÆient damping of kernel omponents is ahieved by the projetion.5. Projetion ontrol and termination riteria. The theoretial onsidera-tions highlight the importane of a good projetion: It goes without saying that themethod will fail, if the projetion is too weak to reign in kernel omponents. Takingthe ue from theorem 4.2, we aim to fore the ratio kx0hk0 : kxhkA below a thresholdÆ > 0 for all iterates.From the properties of the inexat projetion ePh and (4.4) we learn that�1� � � kxh � ePxhk0kxhkA � Æ =) kP0xhk0kxhkA � Æ : (5.1)Of ourse, good bounds for � are hard to get. We take a rude estimate based on thederease of the L2(
)-norm of the residual during a multigrid sweep. It is omputedwhenever a projetion is arried out, and � is hosen to be the maximum of allestimates thus obtained. The �nal adaptive projetion is depited in �gure 5.1. There,� 2℄0; 1[ is a safety fator intended to prevent gross underestimation of �.



18 R. Hiptmair and K. Neymeyrprojet(referene xh 2 Vh,Æ > 0,� 2 [0; 1[)f for(int i = 1; i � q; + + i) f xh  xh � �ehi;xh�0 � ehi g� := hAhxh;xhido f�h := G�hMhxh; h = 0 2 Shmgyle< T >(L,h,�h); zh := Ghh; xh  xh � zh�h := �h � Thh; � := h�h; �hi = h�h; �hi; ��  maxf��; (1� �)� + �g� := ��(1� ��) � hMhzh; zhi�gwhile (� > Æ);gFig. 5.1. Enhaned projetion with adaptive ontrol. The global variable �� is set to 0 initially.Our next onern is the termination of the iteration. After the ompletion of theRayleigh Ritz proedure, f. �gure 3.3, there are on hand the Ritz values �i and theRitz vetors xih with xih0 = 1, i = 1; : : : ; s. The M�1h {norm of the residual rih =Ahxih��iMhxih provides a simple residual bound [54℄ for the quality of the Ritz value�i. It is guaranteed that in eah interval [�i � rihM�1h ; �i + rihM�1h ℄ an eigenvalueof (Ah;Mh) is ontained. For disjoint intervals the �i provide s approximations to sdi�erent eigenvalues of (Ah;Mh). In pratie the inverse of the mass matrix may beapproximated through one Gau�-Seidel step. This yields a quantity that is equivalentto the M�1h -norm independent of the meshwidth.Beyond, we suggest that the ratio r=rQ of Rayleigh-quotients of approximateeigenfuntions is used to judge whether the iteration has been suessful. Only if it isvery lose to 1 the results an be trusted.Remark. It is not a moot point that Æ should be redued during the iteration asthe approximate eigenvetors get loser and loser to the exat eigenvetors. However,we failed to �nd a strategy with heuristi, let alone rigorous, underpinning.6. Numerial experiments. For all numerial experiments overed in this se-tion we relied on lowest order edge/fae elements on uniform Cartesian grids. Ritzprojetions and eigenvalues/eigenfuntions on the oarsest grids were determined bymeans of suitable LAPACK routines. All omputations were arried out in doublepreision arithmeti, whereas the matries were stored in single preision format. Ho-mogeneous Dirihlet boundary onditions were imposed throughout. We omputed 7eigenfuntion/eigenvalue pairs in eah ase.For the tests we resorted to three di�erent settings: Setting A used the unit ube
 =℄0; 1[3 and onstant oeÆient � � 1. The uniform grid on level l, l = 0; : : : ; 5onsisted of 27 � 8l equal ubes. This means that for l = 5 the disretized problems(1.1) and (1.2) feature 2599200 and 2626560 degrees of freedom, respetively.Setting B sports the disontinuous oeÆient�(x) = (100 if jx� ( 13 ; 13 ; 13 )T j � 13 ;1 elsewhere ;



Multilevel Method for Mixed Eigenproblems 19and retains the unit ube as omputational domain. The grids are the same as forsetting A. We study this situation, beause disontinuous oeÆients are notoriousfor a�eting multigrid onvergene.In setting C we set � � 1, but used the \L-shaped" omputational domain 
 :=℄0; 1[3n([0; 12 ℄� [0; 13 ℄� [0; 12 ℄) equipped with a oarsest Cartesian grid with meshwidth12 in x1- and x3-diretion, and meshwidth 13 in x2-diretion, leading to 1048800 edgesthat bear degrees of freedom on level 5.Nested iteration with a tight termination threshold (see below) was used to obtainthe \exat disrete eigenvalues" for eah setting. Those for problem (1.1) are listed intable 6.1.Setting Level #1 #2 #3 #4 #5 #6 #7l = 3 19.76 19.76 19.76 29.65 29.65 49.58 49.58A l = 4 19.74 19.74 19.74 29.61 29.61 49.40 49.40l = 5 19.74 19.74 19.74 29.61 29.61 49.36 49.36l = 3 20.02 20.02 20.02 29.71 29.71 49.76 49.76B l = 4 20.00 20.00 20.00 29.68 29.68 49.58 49.58l = 5 19.99 19.99 19.99 29.67 29.67 49.53 49.53l = 3 15.19 22.77 22.91 34.35 35.14 44.58 49.80C l = 4 15.17 22.71 22.85 34.25 35.01 44.21 49.35l = 5 15.11 22.70 22.83 34.23 34.97 44.11 49.20Table 6.1The seven smallest nonzero \exat disrete eigenvalues" of problem (1.1) omputed by nestediteration (f. experiment 2)Experiment 1. To begin with, we monitored the behavior of the \two-step"Rayleigh quotients rQ from (3.8) and the M�1l -norms 
M�1l �l;�l� 12 of the residuals�l := Alxl� rQ(xl)Mlxl of approximate eigenfuntions xl 2 V l, l = 3; 4; 5. Of ourse,M�1l �l ould not be omputed exatly, but was realized by two Gau�-Seidel-sweeps(GS). Both quantities were traked for 3 eigenfuntions (belonging to eigenvalues#1,#3, and #5) during 15 iterations of PPINVIT. Random grid funtions with theirdegrees of freedoms uniformly distributed in [0; 1℄ served as initial guesses for theeigenfuntions. We observed no qualitative di�erenes between the data reorded indi�erent runs of the ode.Single symmetri multigrid V(1,1)-yles with lexiographi GS-smoothers wereused both in V l and potential spae. The inverse mass matrix required for the alu-lation of the two-step Rayleigh quotient was approximated by three steps of the pre-onditioned onjugate gradient (PCG) method with a symmetri GS-preonditioner.The values of rQ were onsidered as useful approximations of eigenvalues andthus it makes sense to examine their relative errors with respet to the \exat disreteeigenvalues" from table 6.1. The results for problem (1.1) are plotted in �gures 6.1,6.2. First of all, after the e�et of the random initial guesses has abated, a ratheruniform derease of the errors/residual norms takes plae. Next, we note that theM�1l -norm of the residual permits us to assess the auray of the approximate eigen-value very well. As expeted, the larger the eigenvalue the poorer the onvergene (upto a total failure to onverge for the 7th eigenvalue). One should follow the ustomaryadvie that dimension of the subspae should be hosen somewhat larger than thenumber of eigenvalue one is interested in.
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Fig. 6.1. Experiment 1, setting A, problem (1.1). Left: Relative errors of two-step Rayleigh quo-tients when ompared with \exat disrete eigenvalues". Right: Approximate M�1l -norms of residualsExperiment 2. Of ourse, hoosing random initial guesses is foolish, in partiular,as a nested iteration approah will do muh better in a multilevel environment. Thebehavior of the approximate M�1l -norms of the eigenfuntion residuals during nestediteration was reorded for the various settings. On eah level l the iteration wasterminated, if 
M�1l �l;�l� � � for eigenfuntion #1 through #5, where � > 0 is apresribed threshold.
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Fig. 6.2. Experiment 1, settings B(left) and C(right), problem (1.1): Approximate M�1l -normsof residualsThe same multigrid yles as before were employed. Moreover, we hose � = 10�4and � = 10�3. In the latter ase the evaluation of M�1h in the omputation of rQwas based on only one symmetri GS-sweep, whih is muh heaper than the threePCG-steps used for the former ase. The results an be looked up in �gures 6.3-6.6.
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Fig. 6.3. Experiment 2, setting A, edge elements: Nested iteration (Left: M�1h realized by 3PCG-steps. Right: M�1h realized by 1 GS-sweep.)The data strikingly on�rm that the onvergene of multigrid-PPINVIT is inde-pendent of the depth of re�nement: About the same number of iterations is requiredon eah level to ahieve the presribed redution of the norm of the residuals.Experiment 3. Next, we studied the impat of hoies of di�erent multigrid ylesfor both the update and projetion step in setting A. Everything else is like in the�rst experiment. In table 6.2 we report the rate of onvergene of the eigenvalueapproximations between the 3rd and 5th step of the iteration� =vuutrQ(x(5)h )� �exatrQ(x(3)h )� �exat : (6.1)
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Fig. 6.4. Experiment 2, setting A, fae elements: Nested iteration (Left: M�1l realized by 3PCG-steps. Right: M�1l realized by 1 GS-sweep.)
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Fig. 6.5. Experiment 2, setting B, edge elements: Nested iteration (Left: M�1l realized by 3PCG-steps. Right: M�1l realized by 1 GS-sweep.)
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Fig. 6.6. Experiment 2, setting C, edge elements: Nested iteration (Left: M�1l realized by 3PCG-steps. Right: M�1l realized by 1 GS-sweep.)



Multilevel Method for Mixed Eigenproblems 23Level Bh Ch #1 #2 #3 #4 #5 #6 #7l = 3 V(1,1) V(1,1) 0.10 0.17 0.22 0.24 0.35 0.45 0.47W(2,2) V(1,1) 0.03 0.12 0.16 0.21 0.26 0.41 0.61V(1,1) W(2,2)2 0.09 0.20 0.38 0.30 0.41 0.38 0.65l = 4 V(1,1) V(1,1) 0.08 0.21 0.28 0.24 0.39 0.44 0.45W(2,2) V(1,1) 0.03 0.09 0.12 0.26 0.30 0.46 0.57V(1,1) W(2,2)2 0.10 0.16 0.31 0.29 0.29 0.45 0.42l = 5 V(1,1) V(1,1) 0.10 0.19 0.38 0.24 0.74 0.42 0.41W(2,2) V(1,1) 0.03 0.11 0.26 0.22 0.45 0.51 0.56V(1,1) W(2,2)2 0.10 0.16 0.19 0.35 0.43 0.39 0.49Table 6.2Experiment 3, setting A, edge elements: Di�erent rates of onvergene � aording to (6.1) foreigenvalue approximations.The e�et of very aurate preonditioners/projetions seems to be limited, aspredited by the theory of PINVIT: As an be seen from �gure 4.1 we annot bebetter than exat inverse iteration and, for instane, dereasing  from 0.3 to 0.1 haslittle impat.
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Fig. 6.7. Experiment 4: Impat of approximation of M�1hExperiment 4. In experiment 2 we boldly relied on a single symmetri GS-sweep toget an approximation for rQ. Now, we aim to investigate, how di�erent approximationsof M�1h perform in setting A. In partiular, we used either one, two, or three stepsof GS or PCG. The remainder of the algorithm is just borrowed from experiment 1.All omputations were onduted on level 5 and for edge elements and the results aredisplayed in �gure 6.7. The message is that spending muh e�ort on M�1h does notpay o�.Experiment 5. The �nal experiment srutinizes whether projetion ontrol as di-ussed in setion 5 an really o�set poor projetions. To that end we used a plainsymmetri Gau�-Seidel sweep for Ch, whih yields an outrageously bad ePh on �negrids. Otherwise, the algorithm of the �rst experiment was retained and we fousedon level 4.Projetion ontrol with Æ = 0:05, Æ = 0:01 and a safety fator � = 14 was enabled.In addition, as we observed wild utuation of the number of GS-steps suggested by



24 R. Hiptmair and K. Neymeyrthe projetion ontrol, we imposed that this number ould not shrink by more than afator of two between to subsequent projetions (zig-zag-evasion). In �gures 6.8, 6.8,and 6.10 the behavior of relative errors of eigenvalues and the norms of eigenfuntionresiduals were logged. Some ratios r(xh) : rQ(xh) are reorded in �gure 6.11. Numberof GS sweeps enfored by the projetion ontrol are plotted in �gure 6.12.
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Fig. 6.8. Experiment 5: Projetion ontrol with Æ = 0:1
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Fig. 6.9. Experiment 5: Projetion ontrol with Æ = 0:05SuÆiently tight projetion ontrol ensures onvergene. However, the results alsohighlight the need for an adaptive hoie of Æ, beause it seems hard to determine inadvane, when Æ will be suÆiently small. This experiment also hints that the ratioof Rayleigh quotients, whih is to tend to 1, an help detet ine�etive projetions.Finally, the enhaned robustness of the method due to the hoie of the two-stepRayleigh quotient is onveyed in �gure 6.13. If we hoose � = r(xh) with r from (3.1)the method will be way more sensitive to poor projetions.7. Conlusion. We presented a multigrid-preonditioned inverse iterationmethod for the solution of large disrete semide�nite eigenvalue problems inH(url; 
) and H(div; 
). Though a omplete theoretial analysis is still missing,there is strong numerial evidene that the method inherits the eÆieny of multi-
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Fig. 6.10. Experiment 5: Projetion ontrol with Æ = 0:01
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Fig. 6.11. Experiment 5: Ratios of Rayleigh quotients in the ase of loose (Æ = 0:1) and tight(Æ = 0:01) projetion ontrol.
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Fig. 6.12. Experiment 5: Numbers of GS-sweeps for projetion
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