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September 2001

V02/02WWW





CONTENTS i

CONTENTS

1 Introduction 1
1.1 Mesh eigenproblems for elliptic differential operators . . . . . . . . . . . . . 4

1.1.1 A model problem and its discretization . . . . . . . . . . . . .. . . 4
1.1.2 Gradient type eigensolvers . . . . . . . . . . . . . . . . . . . . . .. 8
1.1.3 Preconditioned eigensolvers . . . . . . . . . . . . . . . . . . . .. . 9
1.1.4 Justification of preconditioning for eigensolvers . .. . . . . . . . . . 12
1.1.5 Multigrid and multilevel preconditioning . . . . . . . . .. . . . . . 16
1.1.6 Multigrid solvers for elliptic eigenproblems . . . . . .. . . . . . . . 18

1.2 A hierarchy of preconditioned eigensolvers . . . . . . . . . .. . . . . . . . 20
1.2.1 Subspace iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.2 Preconditioned subspace iteration . . . . . . . . . . . . . . .. . . . 23
1.2.3 Subspace iteration and gradient type schemes . . . . . . .. . . . . . 25
1.2.4 Generalized inexact solvers . . . . . . . . . . . . . . . . . . . . .. 26

1.3 An application: Electronic structure theory . . . . . . . . .. . . . . . . . . . 28
1.4 Model analysis of inverse iteration . . . . . . . . . . . . . . . . .. . . . . . 30

2 Preconditioned inverse iteration 37
2.1 Preconditioning for eigenvalue solvers . . . . . . . . . . . . .. . . . . . . . 37

2.1.1 Assumptions on the preconditioners . . . . . . . . . . . . . . .. . . 39
2.1.2 Normal form of preconditioners . . . . . . . . . . . . . . . . . . .. 40

2.2 A geometric representation . . . . . . . . . . . . . . . . . . . . . . . .. . . 43
2.3 Multiple eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45
2.4 A convergence theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

3 Analysis of fastest convergence 53
3.1 Best preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 54

3.1.1 Extremum points inE


() . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.2 A necessary condition for infimum points . . . . . . . . . . . .. . . 58
3.1.3 Parametrization of infimum points . . . . . . . . . . . . . . . . .. . 60
3.1.4 Dependence of the shift parameter� on . . . . . . . . . . . . . . . 61
3.1.5 Bifurcation of the infima curve . . . . . . . . . . . . . . . . . . . .. 63

3.2 Extremal quantities onL(�) . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.1 Extrema ofkr�()k . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.2 Extremal properties of the coneC



() . . . . . . . . . . . . . . . . . 66
3.2.3 Angle dependence of the Rayleigh quotient onC



() . . . . . . . . . 67



ii CONTENTS

3.3 Mini-dimensional convergence analysis . . . . . . . . . . . . .. . . . . . . 69
3.4 Convergence estimates for the Rayleigh quotient . . . . . .. . . . . . . . . 72
3.5 Critical conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 77

4 Concise convergence estimates 79
4.1 Reformulation of the mini-dimensional analysis . . . . . .. . . . . . . . . . 80
4.2 A matrix function approach . . . . . . . . . . . . . . . . . . . . . . . . .. . 82

4.2.1 An abstract convergence estimate . . . . . . . . . . . . . . . . .. . 82
4.2.2 Several estimates on extremal convergence . . . . . . . . .. . . . . 84

4.3 A critical comparison of convergence estimates . . . . . . .. . . . . . . . . 89

5 A preconditioned subspace eigensolver 93
5.1 Analysis of simplified subspace solvers . . . . . . . . . . . . . .. . . . . . 93
5.2 A convergence theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
5.3 Generalizations and remarks . . . . . . . . . . . . . . . . . . . . . . .. . . 97

6 PINVIT(2) – Preconditioned steepest descent 99
6.1 Rayleigh-Ritz accelerates convergence . . . . . . . . . . . . .. . . . . . . . 100

6.1.1 Steepest descent for the eigenproblem . . . . . . . . . . . . .. . . . 102
6.2 Convergence analysis of INVIT(2) . . . . . . . . . . . . . . . . . . .. . . . 103
6.3 PINVIT(2) convergence theory . . . . . . . . . . . . . . . . . . . . . .. . . 112

6.3.1 Elementary results on extremal convergence . . . . . . . .. . . . . . 112
6.3.2 The-basis representation . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.3 A geometric representation . . . . . . . . . . . . . . . . . . . . . .. 115
6.3.4 A conjecture on the subspace of poorest convergence . .. . . . . . . 117

6.4 Mini-dimensional analysis . . . . . . . . . . . . . . . . . . . . . . . .. . . 118
6.5 Numerical algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 123

6.5.1 Numerical results for the Laplacian . . . . . . . . . . . . . . .. . . 123
6.5.2 Connectedness ofL

+

(�) . . . . . . . . . . . . . . . . . . . . . . . . 127
6.5.3 A search algorithm onL

+

(�) . . . . . . . . . . . . . . . . . . . . . 128
6.5.4 On conjecture 6.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.6 Critical conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 131

7 Numerical experiments 133
7.1 Comparison of the PINVIT(k,s) schemes . . . . . . . . . . . . . . .. . . . . 133
7.2 An adaptive subspace eigensolver . . . . . . . . . . . . . . . . . . .. . . . 140

8 Conclusion and outlook 143

References 147

List of Symbols 157



1

1. INTRODUCTION

C.G.J. Jacobi’s work from 1846 in [64] entitled “Über ein leichtes Verfahren die in der Theorie
der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen”, marks the begin-
ning of the research on the numerical solution of eigenproblems, which even after 155 years
remains an important and vital area in numerical linear algebra. Jacobi investigated a small
eigenvalue problem within only 7 variables describing the stability of the orbits of the 7 plan-
ets which were known at that time. The necessary numerical computations were done by
L. Seidel. A facsimile of the introduction to Jacobi’s paperis shown in Figure 1.1.

The next milestone in the numerical solution of eigenvalue problems were the five papers
written by Wielandt in 1943 and 1944 [135–139], where he introduced the power method and
inverse iteration for computing eigenfunctions of linear operators. The expenditure of work
for such eigenvalue/vector computations was high. In orderto determine the first eigenvalue
(of largest modulus) of a complex4� 4 matrix, Wielandt needed about 50–80 minutes using
an electro-mechanical calculator with a six digit accuracy.

Since the computation of eigenvalues and eigenvectors is significantly more complicated
than the solution of linear systems, it is not surprising that the number of those early works on
numerical algorithms is limited. Before 1940, computing eigenvalues was most often based on
computing the characteristic polynomial and finding its roots. In contrast to this, the spectral
theory for partial differential operators was in those daysin a much more advanced state,
as reflected for instance by the monograph of Courant and Hilbert [26]; see also the book
of Collatz [25], which additionally contains numerous examples of eigenvalue problems for
mechanical systems.

Around the year 1950, with the advent of electronic computers, the situation changed dras-
tically as substantial progress was made in the numerical solution of the eigenvalue problem
and its error analysis. The pioneering work was done by researchers like Arnoldi, Bauer,
Francis, Givens, Householder, Kublanovskaya, Lanczos, Rutishauser, Wilkinson and several
others. The state of the art at the beginning of the 1960s is summarized in the monograph
of Wilkinson [141], which still constitutes an important reference. Many of the algorithms
in this early phase are based on matrix transforming techniques like the very successfulQR
algorithm, due to Francis and Kublanovskaya. TheQR algorithm is most frequently used for
the calculation of the set of eigenvalues of general but relatively small matrices.
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Figure 1.1:Introduction of Jacobi [64].
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Today, as mathematical models invade more and more disciplines, a plurality of problems
in science and engineering leads to eigenproblems. At the same time, the dimension of the
eigenproblems becomes larger and larger, which constitutes the necessity for more efficient
eigensolvers which are capable of solving, e.g., those extremely large eigenvalue problems
arising from the discretization of eigenvalue problems forpartial differential operators. Of
course, since the 1960s considerable progress has been madein the linear algebra of eigen-
solvers as described in the standard monographs by Parlett [107], Golub and van Loan [48],
Saad [117] and the most recent “Templates for the Solution ofAlgebraic Eigenvalue Prob-
lems” [5]. For some survey of the history and main research developments in the area of
computational methods of eigenvalue problems see Wilkinson [140] as well as Golub and van
der Vorst [47, 129].

Nevertheless, there is still an importantchallenge for modern eigensolvers, namely to treat
thoseextremely large and sparse (generalized) eigenvalue problems, which derive from the
discretization of partial differential operators. Such solvers should featureoptimal complexity
even on non-uniform grids andshould not require any regularity assumptions.

In the present work we take up this problem and analyze iterative solvers for mesh dis-
cretizations of eigenvalue problems for self-adjoint and coercive elliptic differential operators.
The discretization can be done by means of the finite element or the finite difference method.
The main difficulty with these discretized eigenproblems istheir sheer size. Today, even on
a standard personal computer, one wants to solve such problems for a number of variables
up to several millions. Later, we will discuss in more detailwhy classical solvers likeQR
or Lanczos cannot be applied to these problems. Instead, special solvers are required which
are capable of exploiting the structure of these problems stemming from discretized partial
differential operators.

Another characteristic trait of these eigenproblems is that one is only interested in a small
part of the spectrum, typically in the smallest eigenvaluesor those nearest to some prescribed
value. Often those eigenvalues have a practical physical meaning, e.g. they characterize the
base frequencies of some vibrating mechanical structure modeled by an eigenvalue problem
for an elliptic partial differential operator. The number of eigenvalues that are to be determined
(together with the corresponding eigenfunctions), rangesfrom 1 up to several hundred.

The aim of this work is to develop anew theoretical frameworkfor the efficient solution
of such extremely large eigenproblems. A central element ofthe solvers presented here are
approximate inversesof that operator whose eigenproblem is to be solved. One usually calls
such an approximate inverse apreconditioner. In our setup very efficient preconditioners are
available, which are based on multigrid iterations or on domain decomposition techniques. A
major advantage of the present approach is that we are able tocompletely separate the ques-
tions of the construction of such an approximate inverse andthat of the analysis of the iterative
eigensolver. In this way we can treat the preconditioner as a“black box”; only specific con-
stants describing the quality of the preconditioner enter into the analysis (in Section 1.1.3 we
provide an analytic description of such quality conditionsdescribing how well the precondi-
tioner approximates the exact inverse of the given operator). Therefore, the proof techniques
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presented in the following are predominantly based on some type of geometric analysis of
the eigensolver and its corresponding linear algebra.We derive several new sharp and non-
asymptotic convergence estimates for such preconditionedeigensolvers. As a by-product, a
new geometric interpretation of these schemes is suggested, providing the basis for a renewed
understanding of the convergence analysis.

The resulting eigensolvers are not only conceptionally simple, easy to implement and
cheap, but also, as an outcome of the convergence theory, robust and stable. Grid-independent
convergence can be guaranteed.

This work is organized as follows: In the remaining part of this chapter we introduce and
justify preconditioning for eigenproblems. Moreover, we suggest a unifying framework for
preconditioned eigensolvers, in which they are derived systematically from some precondi-
tioned variant of subspace iteration. Within this framework new sharp non-asymptotic conver-
gence estimates for the most basic preconditioned eigensolver can be derived, see Chapter 2.
Our new approach to the convergence analysis of preconditioned eigensolvers also allows to
derive several estimates on the fastest possible convergence, as done in Chapter 3. These
new sharp estimates give an explanation for the extremely fast convergence often observed
in the first steps of the iteration. The mentioned estimates are somewhat complex and awk-
ward; therefore we derive drastically simplified estimatesin Chapter 4 without too much loss
of sharpness. Chapter 5 treats the convergence theory of a basic preconditioned subspace
eigensolver. In Chapter 6 we progress one step toward more advanced schemes (within the hi-
erarchy of preconditioned eigensolvers) and provide a (partial) convergence analysis. Finally,
in Chapter 7 we report on the results of some numerical experiments.

1.1 Mesh eigenproblems for elliptic differential operators

1.1.1 A model problem and its discretization

In order to introduce the above mentioned large and sparse generalized matrix eigenvalue
problem, let us now consider the eigenvalue problem for a self-adjoint and coercive elliptic
differential operatorL. We restrict the discussion to a second-ordermodel problemin R

2 or
R

3 .
Therefore, let
 � R

d , d = 2; 3, be a bounded, open, connected set with a Lipschitz con-
tinuous boundary�, which has been subdivided in two disjoint sets�

1

and�
2

. The problem is
to find (some of the smallest) eigenvalues� together with real-valued eigenfunctionsu = u(x)

satisfying

�r((x)ru) + q(x)u = �u; x 2 
;

u = 0; x 2 �

1

; (1.1)

� � (x)ru = 0; x 2 �

2

:
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LetL be a self-adjoint and coercive elliptic partial differential operator.

WEAK FORMULATION OF THE

BOUNDARY VALUE PROBLEM: EIGENVALUE PROBLEM:

Findu 2 H with Find (u; �) 2 H � R

a(u; v) = (f; v); v 2 H; a(u; v) = �(u; v); v 2 H;

for the bilinear forma(�; �) associated withL, the inner product(�; �) and

an appropriate Hilbert spaceH.

MESH DISCRETIZATION OF THE VARIATIONAL PROBLEM

Linear system: Generalized matrix eigenproblem:

Ax = b; A 2 R

n�n

; Ax = �Mx; A;M 2 R

n�n

;

A > 0, A

T

= A. A > 0, A

T

= A,

M � 0, M

T

=M .

EFFICIENT SOLVERS

� Multigrid solvers, � Direct multigrid eigensolvers,

� Multigrid preconditioned � Multigrid preconditioned eigen-

conjugate gradient schemes. solvers; PINVIT(k,s) schemes.

TOTAL COMPLEXITY OF THE ITERATIVE SOLVER

O(n) to computex. O(n) to determine(�
1

; x

1

).

Grid independent convergence for high-quality multigrid preconditioners;

No regularity assumptions required for the best multilevelpreconditioners.

Table 1.1: Solution of boundary value and eigenvalue problems for elliptic operators.
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Therein,� denotes the exterior unit normal to�
2

and(x) is a symmetric positive definite
matrix-valued function whileq(x) is assumed to be a real-valued and, for the sake of having
only positive eigenvalues, a positive function. Both functions are assumed piecewise continu-
ous.

As a next step toward a solution of (1.1), one can derive its weak formulation; Table 1.1
contains a schematic description. The variational form allows the application of the mathe-
matically sound spectral theory for self-adjoint compact operators in Hilbert spaces, which
guarantees the existence of a countable set of eigenvalues—each eigenvalue corresponding to
a finite dimensional invariant subspace. We do not go into thedetails but refer to Raviart and
Thomas [112] as well as Babuška and Osborn [3].

The finite-dimensional Galerkin approximation of the weak form (or its Rayleigh-Ritz
discretization) leads to the generalized matrix eigenvalue problem

Ax = �Mx; (1.2)

whereA 2 R

n�n andM 2 R

n�n are symmetric positive (semi)definite matrices, which are
very large and sparse. ThenA is called the discretization (or stiffness) matrix andM the mass
matrix.

To introduce some necessary notation let(�

i

; x

i

) be the eigenpairs of(A;M), which are
assumed to satisfy

(x

i

; Ax

j

) = �

i

Æ

ij

; (x

i

;Mx

j

) = Æ

ij

;

whereÆ
ij

denotes the Kronecker delta. Then real positive eigenvalues�
i

of (A;M) may have
arbitrary multiplicity and are in such an order that

0 < �

1

� �

2

� : : : � �

n

:

The dimensionn of the basis of finite element functions may exceed10

7 even on standard,
present-day personal computers. Obviously, the sparse matricesA andM cannot be stored in
the computer as full matrices. As typical of finite element codes, they are either stored in some
sparse matrix format, or program routines are provided to compute the matrix-vector products
Ax andMx by local compilation for any input vectorx. Note that both matrices have only
a small number of nonzero elements per row, e.g., typically 5or 9 elements for a linear finite
element discretization of a second order elliptic differential operator inR2 or R3 .

For our needs, there is no necessity to forceM to equal a diagonal matrix—as sometimes
done in the finite element method and called mass-lumping. Surely, most of the available
eigensolvers are designed to solve the standard matrix eigenvalue problem and some linear
transformation is required to reduce (1.2) to the standard form. But the preconditioned eigen-
solvers, as presented in this work, can be applied to the standard and to the generalized eigen-
value problem with only marginal changes. Nevertheless, for the sake of convenience, we
restrict the analysis in Chapters 2 to 6 to the standard eigenvalue problem. The theoretical
justification of such a reduction is a change of the inner product, see [73, 97] for the analysis.
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There is a further important feature of the matrix pencil(A;M) to be mentioned: The
condition number ofA is typically very large. For second-order partial differential operators
(like problem (1.1)) it increases likeh�2 in the mesh-widthh. In contrast to this, the condition
number ofM is uniformly bounded by a constant independent of the mesh size.

Under the given restrictions the set of efficient solvers for(1.2) is small. Most of the “linear
algebra textbook eigensolvers” cannot be applied for the following reasons:

1. Lack of computer storage:
The large, sparse matricesA andM can neither befactored(like theLU or Cholesky
decomposition), nor be iterativelytransformed(e.g. by successive similarity transforma-
tions), since the computer storage for holding the typically denser computed factors or
transformed matrices is not available. Usually the whole available storage is needed to
hold the high-dimensional iteration vector (or several of them in the case of a subspace
iteration) and in order to define the (sometimes adaptively generated non-uniform) grid
structure. Within a matrix-free environment the generatedmesh defines implicitly how
to evaluate the productsAx andMx, which is done within specific subroutines. The
given restrictions exclude, among others, not only inverseiteration and the Rayleigh
quotient iteration with their variants, but also theQR-method and the Jacobi iteration.

2. Ill-conditioning ofA:
The large condition number ofA, e.g. for the discrete Laplacian�(A) ' h

�2, im-
pedes the successful application of the Lanczos process, asthe convergence slows down
considerably for decreasingh. See [90] for a combination of preconditioning and the
Lanczos algorithm. Nevertheless, for problems of moderatesize the popular package
ARPACK [79] can provide reliable numerical results.

A large condition number can also destabilize the solution of linear systems inA (but a
direct solution has already been excluded by the points madeabove).

The question now is how to overcome these difficulties in order to construct efficient eigen-
solvers? Preconditioning (in other words, the applicationof an approximate inverse) can pro-
vide some cure.

To this end let us first derive the basic iterative scheme of gradient and preconditioned
eigensolvers in Sections 1.1.2 and 1.1.3. A brief survey on various approaches to precondi-
tioning for eigensolvers is contained in Section 1.1.4. Subsequently, we review the elements
of multigrid preconditioning in Section 1.1.5; the deep results developed in the early 1990s
in the field ofmultilevel preconditioning techniquesprovide the theoretical basis for making
possible preconditioned eigensolvers withoptimal computational complexityon non-uniform
grids andwithout any requirements on the regularity. Finally, in Section 1.1.6 an outline of
alternative multigrid schemes for the eigenproblem is given.
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1.1.2 Gradient type eigensolvers

Our goal is to developfast (in the best case with a total complexity ofO(n)) andstorage-
efficientiterative solvers for thepartial eigenproblem(1.2). A partial eigenproblem means that
we are only interested in parts of the spectrum. Here we try tocompute only a modest number
of the smallest eigenvalues together with the corresponding invariant subspace. To sum up, the
eigenproblem (1.2) is given for the (sometimes extremely) large and sparse matricesA andM .
Moreover,A is an ill-conditioned matrix. Under the given restrictionsit is highly undesirable
to factor these matrices or any linear combination of them into a product of matrices. In
other words, we avoid any direct solution of equations involving these matrices because of its
computational costs and the usually unavailable storage.

On the other hand we should compile the minimal set of operations which we are willing
to make available for an eigensolver. For arbitraryx; y 2 R

n and� 2 R these are:

M INIMAL SET OF AVAILABLE OPERATIONS:

1. Matrix-vector multiplications:x! Ax andx!Mx,

2. Linear operations:x + y, �x,

3. Inner products:(x; y) = x

T

y.

The matrix-vector multiplications can be realized byO(n) floating point operations since
the number of nonzero elements per row ofA andM is a small fixed number. Therefore, any
fixed combination of the listed operations can be done for total costs that behave likeO(n).

Even with this small number of operations one can construct afirst, preliminary eigen-
solver, which allows to determine the smallest eigenvalue of A together with an eigenvector:
The idea is to reformulate the eigenvalue problem (1.2) as anoptimization problemfor the
(generalized) Rayleigh quotient

� := �(x) =

(x;Ax)

(x;Mx)

: (1.3)

As suggested by Kantorovich [65] as well as Hestenes and Karush [58] one tries to correct
a given iteratex in the direction of the negative gradient of the Rayleigh quotient in order to
decrease the Rayleigh quotient of the new iterate.

As the gradient of the Rayleigh quotient (1.3) is given by

r�(x) =

2

(x;Mx)

(Ax� �(x)Mx); (1.4)

the so-calledgradient methodfor the eigenproblem has the form

x

0

:= x� !(Ax� �(x)Mx): (1.5)
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Therein,! is a scaling parameter, which has to be determined appropriately. In the best (but
most expensive) case, an optimal parameter!̂ is determined in a way that the Rayleigh quotient
of the new iteratex0 is minimized, i.e.

!̂ 2 argmin

!2R

�(x� !(Ax� �Mx)):

This scheme is calledsteepest descentfor the eigenvalue problem. The computation of!̂ can
be done implicitly by applying the Rayleigh-Ritz method to the 2D subspace spanned byx and
r := Ax��(x)Mx. As long as the residualr is a nonzero vector, i.e. thatx is no eigenvector of
A, the Rayleigh quotients of the iterates of the gradient method form a sequence of decreasing
numbers, which (usually) tends to the smallest eigenvalue�

1

. Then the iterates themselves
converge to an associated eigenvector.

Unfortunately, the simple gradient method (1.5) and even steepest descent suffer frompoor
convergence in the case of the ill-conditioned eigenproblemunder consideration. Hence, these
schemes cannot satisfy the demand for grid-independent convergence. A direct proof of this
fact is given in Section 3 of the Technical Report [94]. This disappointing result does not come
as a surprise since the gradient method (1.5) and the Lanczosscheme span the same Krylov
space. While the first scheme only extracts a suboptimal approximation from this Krylov
space, even the latter scheme is known to suffer from ill-conditioning ofA, cf. Section 1.1.1.

The gradient method and some acceleration techniques (e.g.by various scaling strategies
or by adoption of the conjugate gradients method) are treated, for instance, in Bradbury and
Fletcher [11], Faddeev and Faddeeva [39], McCormick [85, 86], Ruhe and Wiberg [115], Ro-
drigue [113], Longsine and McCormick [83], Döhler [30] as well as in Feng and Owen [42].
The very similar scheme ofsteepest ascent, in which the Rayleigh quotient ofx0 is maximized
with respect to the choice of!, has been analyzed by Knyazev and Skorokhodov [76], where
also sharp convergence estimates have been derived.

1.1.3 Preconditioned eigensolvers

Preconditioning can improve the convergence properties ofgradient type eigensolvers deci-
sively. A preconditionerB�1 2 R

n�n for A (also often called anapproximate inverse) is a
symmetric positive definite matrix, which satisfies the estimate

Æ

0

(x;Bx) � (x;Ax) � Æ

1

(x;Bx); for all x 2 R

n

; (1.6)

for some real positive constantsÆ
0

andÆ
1

. At this point we do not comment on the details
of preconditioning, but refer to Section 1.1.5 for a brief survey on multigrid and multilevel
preconditioning. We often assume, for the sake of simplicity, the somewhat simpler inequality





I �B

�1

A





A

� ; (1.7)

for some real constant 2 [0; 1). Such an assumption is typically fulfilled for multigrid and
domain decomposition preconditioners; for the best of themthe constant is bounded away



10 1. Introduction

from 1 independently of the mesh size, see Section 1.1.5. Letus finally mention that in most
cases the assumption (1.7) does not mean any restriction of the generality of the analysis,
cf. Section 2.1.1 for details.

We emphasize that the preconditionerB

�1 in our matrix-free environmentis assumed to
be only available as a matrix-vector-multiply function. Let us now include this operation into
the following extended (in comparison with Section 1.1.2) set of admissible operations:

EXTENDED SET OF OPERATIONS FOR PRECONDITIONED EIGENSOLVERS:

1. Matrix-vector multiplications:x! Ax andx!Mx,

2. Preconditioner-vector multiplications:x! B

�1

x,

3. Linear operations:x + y, �x,

4. Inner products:(x; y) = x

T

y.

In a formal and preliminary way we derive a basicpreconditioned eigensolverby premul-
tiplying the residualAx � �(x)Mx in the gradient method (1.5) by the preconditionerB

�1.
This leads to the so-calledpreconditioned gradient scheme

x

0

= x� !B

�1

(Ax� �(x)Mx): (1.8)

Once more, the scaling constant is to be determined appropriately. We first assume a properly
scaled preconditioner so that! = 1. (Later in Chapter 6 we will analyze the preconditioned
steepest descent scheme, where! is constructed in a way so that the Rayleigh quotient�(x

0

)

is minimized.)
For a long time, without doubt, the area of preconditioned eigensolvers was dominated by

Russian mathematicians. They were first suggested by Samokish [119] in 1958 and later by
Petryshyn [110]. But there are exceptions, e.g. Ruhe [114] deals with convergent splittings for
eigensolvers and Wachspress [132] proposes a combination of inverse iteration and multigrid
iteration for the solution of the systems of linear equations. Some of the older works in this
area are only available in Russian, which has not been beneficial to the popularization of such
techniques in Western literature. Explicit convergence estimates proving grid independent
convergence of preconditioned eigensolvers were given by Godunov et al. [46] and D’yakonov
et al. [31, 35, 36]. A review of several results and the relevant literature is given in Chapter 9 of
D’yakonov’s monograph on optimization in solving ellipticproblems [32]. Still an interesting
source of ideas and proof techniques is Knyazev’s PHD thesis, which first appeared in Russian
[68] and whose main results are available in a translation [69].

While (1.8) is a vector scheme to compute the smallest eigenvalue together with an eigen-
vector, correspondingsubspace solvershave been suggested and analyzed by Samokish [119],
D’yakonov and Knyazev [33, 34], Meyer [89], D’yakonov [32],Bramble, Knyazev and Pas-
ciak [15], Zhang, Golub and Law [149], Neymeyr [98] and others. We refer to Chapter 5 for
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a more detailed discussion including a brief review of the new analysis presented in [98]. A
systematic classification of several preconditioned eigensolvers for symmetric positive defi-
nite eigenproblems and a survey on the literature till 1998 has been given by Knyazev [71].
See also [73] for a review on more recent developments.

It is important to note that the preconditioned eigensolvercan be realized at optimal costs:
Each step of the scheme (1.8) can be executed with small memory requirements, since only
3 vectors are required to holdx and the intermediate resultsAx andMx. The latter matrix-
vector products are also needed to compute the Rayleigh quotient. We note that the necessity
for storing 3 vectors (instead of 2) can be explained by the requirement for computingAx
andMx only once per iteration of (1.8). Thetotal computational costsbehave likeO(n), if
x! B

�1

x can be evaluated for optimal costs, too. In particular, 3 matrix-vector products are
required (each one forA, M andB�1), 2 inner products are needed to compute the Rayleigh
quotient, and finally 2 operationsx + y and 1 operation�x are necessary to evaluatex0.

Some preconditioned eigensolvers have been discussed in the literature, which are based
on similar ideas compared to that of the preconditioned gradient scheme: As an example let
us consider Equation (1.8). For the case of exact preconditioning orB = A, we obtain the
descent directiond, i.e. the direction in which the iteratex in (1.8) is corrected, as the solution
of the linear system

Ad = Ax� �(x)Mx: (1.9)

In (1.9) the right-hand side is given by the residual belonging tox. Let us compare the latter
equation with theDavidson method[27, 117] and theJacobi-Davidson method[120–122]. In
both cases thecorrection equationto be solved approximately ford is of the form

P (A� �(x)M)Pd = Ax� �(x)Mx: (1.10)

Hence, Equations (1.9) and (1.10) differ in the operators onthe left-hand sides,which are to be
inverted approximately. For the Davidson methodP equals the identity matrix, and (1.10) is
solved approximately by using adiagonalpreconditioner (roughly) approximating the inverse
of A � �(x)M . A further variant of the latter schemes is the Generalized Davidson method
permitting also non-diagonal preconditioning, see Oliveira [103] and Ovtchinnikov [104] for
recent results on its convergence. In contrast to this, for the Jacobi-Davidson schemeP is
an orthogonal projector to the complement of the current eigenvector approximation. This
projection provides the stabilization necessary for the more general scope of this solver to
solve even unsymmetric and complex eigenvalue problems. For the analysis of the Jacobi-
Davidson method applied to Hermitian positive definite matrix pencils see Notay [100, 101].

As a notable feature, convergence proofs for preconditioned eigensolvers aredifficult and
often extremely technical. Moreover, for some of the most effective and successful eigen-
solvers (e.g. the Jacobi-Davidson method of Sleijpen and van der Vorst [121] and the Locally
Optimal Preconditioned Conjugate Gradient (LOBPCG) scheme as suggested by Knyazev
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[70, 72]) no convergence theory is yet available—aside fromtrivial upper bounds which can
be derived from related but less effective schemes.

There is a rule-of-thumb, sometimes formulated within the community of researchers on
preconditioned eigensolvers, which says that it is easy tosuggesta new eigensolver scheme
(built on some combination of elements like orthogonal projections, Rayleigh-Ritz steps with
respect to various subspaces, preconditioning strategiesand so on), but that it is very hard
to provide a sound convergence theory as well as to beat the performance of already known
methods.

In this work we suggest a new theoretical framework for some class of preconditioned
eigensolvers in which the iteration (1.8) is the most simplerepresentative scheme. As pointed
out in the next section, we prefer to derive preconditioned eigensolvers from apreconditioned
variant of inverse iteration. Within this framework a new geometric interpretation is suggested
which should convey a deeper understanding of preconditioning for the eigenproblem.

1.1.4 Justification of preconditioning for eigensolvers

It is by no means obvious that the replacement of the residualby the preconditioned residual,
as done in (1.8) compared to (1.5), improves convergence. Inother words, the demonstrated
derivation of the preconditioned eigensolver (1.8) does not provide any explanation for its
claimed efficiency. Of course, the convergence theory as contained in the cited papers (see
Section 1.1.3) provides clear evidence for the superiorityof preconditioned eigensolvers as,
e.g., the convergence rates can be bounded away from 1 independently of the mesh size.

Furthermore, there is no consent in the literature on how to motivate and justify precon-
ditioning for iterative eigensolvers. Hence, let us now systematically review the several ap-
proaches to the preconditioned eigensolver (1.8). Not all of them provide an “intuitive jus-
tification” for preconditioning, but we hope to give, at least with the two last approaches, a
convincing explanation of why preconditioning makes a difference.

We first report on the approaches of D’yakonov [32], Knyazev [71] and Meyer [89], who
all interpret preconditioned eigensolvers as modifications of the basic gradient-type eigen-
solver (1.5). Then we introduce a very different approach, which has been presented in [95, 96]
by the author of this work. In these latter papers the root forderiving preconditioned eigen-
solvers is seen in the approximate solution of the system of linear equations associated with
inverse iteration.

1. Taking the gradient with respect to the(�; B�) inner product:

D’yakonov [32, Section 9.4.1] points out that the search direction of (1.5) is the gradient
of (1.3) in the Euclidean spaceRn , while the gradient, with respect to the(�; B�) inner
product, reads

r

B

�(x) =

2

kxk

2

M

B

�1

(Ax� �(x)Mx): (1.11)
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Obviously, a correction ofx in the directionr
B

�(x) defines the preconditioned gradient
method. But this ansatzdoes not offer a direct explanation for the question on why such
preconditioning is advantageous. Nevertheless, the convergence analysis by D’yakonov
and Orekhov [36], D’yakonov and Knyazev [33] and D’yakonov [32] substantiates that
the choice (1.11) hastens convergence—but here we would like to find further analytic
and “intuitive” reasons why theB inner product is an advantageous selection.

The following fourth interpretation may shed light on (1.11): for exact preconditioning
orB = A, the correction termr

A

�(x) together with! = 1 transforms (1.5) to (scaled)
inverse iteration.

2. Applying the gradient method to the preconditioned eigenproblem:

Knyazev [71, Section 4] compares the 2 eigensolvers

x

0

= x� !A

�1

(Ax� �Mx) (1.12)

and
x

0

= x� !(Ax� �Mx): (1.13)

Therein the scalar� is an iteration parameter which can be identified with the Rayleigh
quotient ofx. In a second step the eigenproblem (1.2) is multiplied with the precondi-
tioner leading to the preconditioned eigenproblem

B

�1

Ax = �B

�1

Mx: (1.14)

Obviously, neither the eigenvalues nor the eigenvectors of(B

�1

A;B

�1

M) are changed
in comparison to those of(A;M). The key point is that the two schemes (1.12) and
(1.13) exhibit a very different behavior if applied to the preconditioned eigenproblem
(1.14). Whereas replacing(A;M) by (B

�1

A;B

�1

M) leaves (1.12) unchanged, the
scheme (1.13) becomes a preconditioned one

x

0

= x� !B

�1

(Ax� �Mx): (1.15)

It is argued in [71] that the eigenvectors of the iteration matrix (A � �M) in (1.13)
are not the same as those of the original problem (1.2) and that this is the reason why
preconditioning makes a difference.

Note that if� is identified with the Rayleigh quotient ofx, then the substitution of
(A;M) by (B�1A;B�1M) in (1.3) has to be accompanied by a change of the Euclidean
inner product to the inner product induced byB. Only such a simultaneous substitution
can keep the Rayleigh quotient unchanged.
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3. Preconditioning allowing to treat ill-conditioned eigenproblems:

Meyer [89, Section 5.1] assumes (1.14) as a mesh eigenproblem for a self-adjoint and
coercive elliptic partial differential operator. A reformulation of the preconditioned
eigenproblem (1.14) as

Ax = �Mx (1.16)

is considered withA = B

�1

M , M = B

�1

A and� = 1=�. In order to determine
the largesteigenvalues�

i

= 1=�

i

of (1.16), the convergence theory for the gradient
method given by Longsine and McCormick [83] is employed. This is done with respect
to the(�; B�) inner product for whichA andM are symmetric operators. While Meyer,
throughout his work, discusses the case of subspace schemesonly, we here restrict his
arguments to a 1D subspace.

There are two decisive factors proving the efficacy of the preconditioned scheme. The
first point is that the gap numberg

g =

1=�

1

� 1=�

2

1=�

1

� 1=�

n

is of the orderO(1) in the mesh parameterh, since e.g.1=�
n

' h

2 for the Laplacian.
The second point is based on the fact that the condition number �(B�1A) for the best
(multigrid) preconditioners is bounded independently ofh. Having both quantities under
control, the convergence theory of Longsine and McCormick [83] as well as Meyer
[89] provides quantitative grid-independent estimates concerning the convergence of the
eigenvalue approximations to the eigenvalues of problem (1.16), or (1.2) equivalently.

4. Preconditioned inverse iteration:

Inverse iteration for computing the smallest eigenvalue, together with an eigenvector of
(1.2), maps a given iteratex to the new iteratêx by solving the linear system

Ax̂ = �Mx; (1.17)

for some� 6= 0. A normalization ofx̂ may follow in order to avoid numerical under-/
overflow. The choice of� is immaterial for the convergence of inverse iteration. Hence,
we may set� = �, the generalized Rayleigh quotient (1.3) ofx. This choice of� has
the effect that̂x� x tends to 0 as(x; �(x)) converges to an eigenpair and paves the way
for the application of the preconditionerB�1. Approximate solution of (1.17) results in
the error propagation equation

x

0

� �A

�1

Mx = (I � B

�1

A)(x� �A

�1

Mx); (1.18)

in which the initial errorx � �A

�1

Mx, i.e. the difference between the actual iterate
x and the result of inverse iteration�A�1Mx, is multiplied by the error propagation
matrix I � B

�1

A and results in the final errorx0 � �A

�1

Mx.
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The crucial point now is that (1.18) can be rewritten in the following form, which does
not contain the inverse ofA

x

0

= x�B

�1

(Ax� �Mx): (1.19)

This is the well-known preconditioned gradient scheme (1.8). Because of its derivation
we prefer to call (1.19)preconditioned inverse iteration, abbreviated by PINVIT.

The new derivation via the error propagation equation(1.18) has given rise to anew
convergence analysis providing sharp non-asymptotic convergence estimates. These
results have been published in two papers by Neymeyr [95, 96]. On this basis somewhat
simplified convergence estimates have been derived; they have appeared in a joint paper
with Knyazev in [73].

The central results and conceptions of this analysis are summarized in Chapter 2; these
results provide the basis for the further analysis contained in this work.

Formally, one can look at (1.18) as an inner/outer loop iteration: the inner loop uses
preconditioning to solve (1.17) and the outer loop performsinverse iteration. We do
not pursue this point of view since any inner loop solver can be replaced by a (more
accurate) preconditioner providing the same result in a single step. Moreover, as will
be highlighted in Chapter 3, exact preconditioning, i.e.B = A, is not the best choice
for this scheme. Best preconditioning for the eigenvalue problem leads to the largest
decrease of the Rayleigh quotient; in the most favorable case this would be a decrease
to the smallest eigenvalue�

1

. Such an optimal decrease, which means one-step con-
vergence to an eigenvector belonging to�

1

, may happen; cf. Lemma 3.2 and Corollary
4.8.

Remark 1.1. Up to now we have discussed various ways of how to derive and motivate pre-
conditioned eigensolvers. Beyond that, we have to state that there is no consent in the liter-
ature concerning the interpretation of preconditioned eigensolvers. It is not even clear how
to determine the ideal preconditioner for an eigensolver. In the recent “Templates for the
solution of algebraic eigenvalue problems”, it is stated that “in general the matrix being pre-
conditioned is nearly singular”. In the light of the last interpretation (given above) this is
clearly not the case since a preconditioner forA and not forA � �

1

M is considered! In
general, the preconditioned eigensolvers analyzed in thiswork do not belong to the class of
approximate shift-and-invert iterations, as we use preconditioners for the (nonsingular) dis-
cretization matrix. Nevertheless, it is very tempting to have a preconditioner approximating
the inverse ofA � �M in order to mimic the fast convergence of the Rayleigh quotient iter-
ation. But as already pointed out in Sleijpen and van der Vorst [121] in the context of the
Jacobi-Davidson scheme, the exact inverse ofA � �

1

M would lead to no expansion of the
search subspace.
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The same argument would apply for the preconditioned eigensolver (1.19). InsertingB =

(A� �I) in the PINVIT scheme results in

x

0

= x� !B

�1

(A� �I)x = (1� !)x:

The outcome would be an uncontrolled cancellation (in the case! � 1), or stationarity of the
iteration otherwise. Such a phenomenon is often described in the literature and it is advised to
apply a preconditioner which is not an “overly accurate” approximation of the shifted matrix
A � �M . Otherwise, as it is the case for the generalized Davidson scheme, one is faced
with the difficulty that a further improvement of the qualityof the preconditioner will destroy
convergence increasingly.

1.1.5 Multigrid and multilevel preconditioning

What is the efficiency and computational complexity that canreasonably be expected for a
multigrid eigensolver for mesh eigenproblems?

Any derivation of such an eigensolver should be guided by thehighly efficientmultigrid
solversfor the numerical solution ofboundary value problemsfor the class of operators under
consideration. It is well known that such multigrid schemescan be understood as precondi-
tioners. Therefore, in the light of preconditioned inverseiteration (compare its derivation in
Section 1.1.4), it is clear thatany multigrid preconditioners as developed for the solution of a
boundary value problem (for a self-adjoint and coercive elliptic partial differential operator)
can be used as a “black box” for the solution of the corresponding eigenvalue problem.

In Table 1.1 we schematically compare the treatment and solution of a boundary value
problemwith that of aneigenvalue problemfor an elliptic partial differential operator. The
first step toward the solution of both problems consists in their weak formulation. These
are defined within proper Hilbert spaces. The second step is their discretization with respect
to some finite-dimensional subspace, spanned by a basis of finite element functions, of the
given Hilbert spaces. While the Galerkin discretization ofthe boundary problem results in the
linear systemAx = b, the discretization of the variational eigenvalue problemleads to the
generalized matrix eigenvalue problem (1.2). The main motivation for the present work was
the observation of some unbalance between the set of possible solvers (and their convergence
theory) for the boundary value problem and those for the eigenvalue problem:
On the one hand, numerical schemes for the iterative solution of linear systems of equations
exploit or are based on the structure prescribed by the partial differential equation and its
discretization. Examples are the classical schemes like the successive overrelaxation (SOR),
the alternating direction iteration (ADI) as well as the more recent and very efficient multigrid
and domain decomposition schemes. On the other hand, eigensolvers like inverse iteration,
QR and Lanczos were developed from a point of view of numerical linear algebra—they do
not profit from the structure of the spectral problem for (discretizations of) partial differential
operators. Therefore, our goal is to develop an eigensolver, which should reach an efficiency



1.1. Mesh eigenproblems for elliptic differential operators 17

comparable to the typical efficiency of iterative solvers for the numerical solution of boundary
value problems for this class of operators.

Obviously, the scheme of preconditioned inverse iterationconstitutes a linkbetween the
discrete eigenproblem(1.2) andmultigrid preconditionersfor the solution of boundary value
problems for self-adjoint and coercive elliptic boundary value problems.

Therefore, let us now give a brief survey on such highly efficientmultigrid schemes, which
allow to solve boundary value problems in the form of their corresponding linear systems of
the dimensionn with optimal complexityO(n). The key point is that they exploit the structure
imprinted on the problem by the partial differential equation and its discretization.

Multigrid algorithms have been developed since the early 1960s. The starting point was
Fedorenko’s [41] two-grid scheme for the solution of the Poisson problem on the unit square.
In 1964, Fedorenko extended this work to aW -cycle and gave a rigorous convergence proof
showing grid-independent convergence for this problem. Names like Bachvalov, Astrakhant-
sev, Brandt, Bank and Dupont are connected with the further development of the theory of
multigrid methods forH2-regular boundary value problems [1, 4, 6, 18]. Hackbusch’sworks
[51, 53, 54] from 1976 and the early 1980s mark a significant advance in the theory of multi-
grid and show that the convergence of the multigrid method (W -cycle) rests on anapprox-
imation propertyand asmoothing property. These properties have been proved for several
customary smoothers and discretizations. These results [55] are often denoted as theclassical
multigrid theory. Similar results have been gained by Braess and Hackbusch for theV -cycle
[12, 13]. But the above mentioned convergence theory is usually only applicable to uniform
grids andH2 regular problems.

The latter restrictions have been surmounted by the development and the analysis of so-
called multi-level methods. The hierarchical basis preconditioner of Yserentant [144] belongs
to that class. Quasi-optimal (i.e.O(n logn)) complexity has been shown without regularity as-
sumptions and even for non-uniform triangulations. The major drawback of hierarchical basis
multigrid methods is that the convergence inRd , d � 3, deteriorates, as the condition number
increases exponentially in the number of grid levels. Let usfinally mention that the multilevel
BPX preconditioner of Bramble, Pasciak and Xu [17] featuresdimension-independent con-
vergence behavior. The works on classical multigrid and multilevel methods have culminated
in the papers of Bramble, Pasciak, Wang and Xu [16] and Xu [143], in which the classical
multigrid and the new multilevel schemes have been presented within a unified theory of ad-
ditive and multiplicative abstract subspace correction schemes. See also Yserentant [148] for
a review of all these developments.

Let us summarize that the preconditioned eigensolver (1.19) inherits the mentioned fa-
vorable properties from multilevel preconditioning. Therefore, the importance of the precon-
ditioned inverse iteration scheme can be explained from thefact thatoptimal computational
complexitycan even be guaranteed fornon-uniform gridsand without any assumptions on
the regularity. Hence, preconditioned eigensolvers may appear as those optimal multigrid
schemes searched for for a long time.
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1.1.6 Multigrid solvers for elliptic eigenproblems

The aim of this section is to give a brief outline on alternative multigrid-based schemes for the
numerical solution of the eigenvalue problem for elliptic partial differential operators, see also
[75] for some short review on several applications.

Thebenefitof certain of these schemes (compared to the preconditionedeigensolver intro-
duced so far) is theirwider range of applicability, in a sense that they cannot only be applied to
the eigenproblem for a self-adjoint and coercive elliptic partial differential operator. E.g., the
direct multigrid solverof Hackbusch can be used for the general elliptic eigenvalueproblem.

On the other hand, most of the multigrid eigensolvers mentioned below require elabo-
rate programming techniques to write the program code. Thisis typically much more labor-
intensive than using multigrid as a “black-box” as it is possible in the case of preconditioned
eigensolvers (for which ready-to-use program codes can be taken from a library of multigrid
solvers). So the majordrawbackof such alternative multigrid techniques is to be seen in the
costs for writing multigrid eigensolver code and in the lossof flexibility, as various multi-
grid preconditioners can easily be applied to and tested within the setup of preconditioned
eigensolvers.

Let us first specify those components which can usually be grafted on any such multigrid
eigensolver:

� Subspace extension: Having designed an eigensolver to computeonlythe smallest eigen-
value together with an eigenvector, this vector scheme can be extended to a subspace
algorithm in order to compute the invariant subspace belonging to some of the small-
est eigenvalues. To this end the vector scheme is applied to each of the Ritz vectors
spanning the actual subspace. By means of the Rayleigh-Ritzprocedure the new Ritz
values and Ritz vectors are computed. (An alternative but less stable strategy would be
the application of the deflation technique.)

� Nested iteration and adaptivity: Mesh eigenvalue problems for partial differential oper-
ators are usually first given on a coarse grid. If the associated eigenproblem is relatively
low dimensional, it can easily be solved by standard eigensolvers likeQR. The coarse
grid approximations are prolongated to some refined grid. Bymeans of nested iteration
the eigenvectors/values are computed on a sequence of refined grids by using a multigrid
technique while the problem size increases considerably.

Nested iteration can be combined with the concept of adaptivity: By generating adaptive
grids, numerical approximation of the eigenvalues/vectors within a prescribed tolerance
can often be gained with only a small portion of the necessarywork when uniform grid
refinement is employed. In order to construct an adaptive eigensolver one has to provide
appropriate error estimators for the iteration error (to define a stopping criterion for the
iterative solver on the actual grid) and for the discretization error (to control the mesh
refinement), see [44, 97] and also Section 7.2.
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A natural approach to the multigrid solution of the eigenvalue problem is to treat it as
a nonlinear equation and to apply a nonlinear multigrid solver, e.g., the full approximation
scheme (FAS), [20]. Another successful technique is the linearization of the discrete eigen-
problem and to use multigrid as an inner solver. This linear solver is embedded in an outer
iteration like the Rayleigh quotient iteration [87] or inverse iteration (with a shift) [7]. When-
ever linear systems in indefinite matrices likeA� �M (for some shift parameter�) are to be
solved, one is faced with the difficulty to define a termination criterion for the inner solver,
cf. Section 1.2.4. Moreover, if� is near to an eigenvalue of(A;M) the problem is almost
singular. Whereas it is well known, due to the analysis of Peters and Wilkinson [109], that
such a singularity does not destabilize inverse iteration with accurate solvers, it is a hard task
to solve such equations approximately withmultigrid methods. Therefore in the analysis of
Bank [7] the shift parameter is bounded away from the eigenvalues of(A;M). One way to
overcome this difficulty is thedirect multigrid approachof Hackbusch [52, 55] whose central
step is the solution of some correction equation within the orthogonal complement of the ac-
tual eigenvector approximation. For this reason the Hackbusch algorithm is intimately related
with nested iteration in order to provide reliable coarse grid projections. For a given iteratex
having the Rayleigh quotient�(x) the resulting two-grid method reads as follows:

~x = Sx (smoothing step)

d



= R(A� �(x)M)~x (coarse grid projection of the residual)

d

?



= Q



d



(M -orthogonal projection)

v



= (A



� �(x)M



)

�1

d

?



(solution of correction equation)

x

0

= x� PQ



v



: (prolongation and correction)

Therein, the index denotes the coarse grid quantities.R is a restriction operator,P is a
prolongation andQ



is the orthogonal projection operator to theM -orthogonal complement of
the actual eigenvector approximations. Finally,x

0 is the new eigenvector approximation. The
coarse grid problem is no longer an eigenvalue problem but a singular equation, which can be
solved recursively on the coarse grids. This is done by solving correction equations, each in the
orthogonal complement of the previously computed coarse grid eigenvector approximations.
For an application of this eigensolver to the square plate problem see [56, 61, 62].

As another successful multigrid eigensolver let us mentionthe Rayleigh quotient multigrid
(RQMG) minimization technique suggested by Mandel and McCormick [22, 84]. In analogy
to the (preconditioned) gradient scheme the idea is to consider the eigenvalue problem as an
optimization problem for the Rayleigh quotient. In order togenerate a sequence of iterates
with a decreasing Rayleigh quotient, on each grid levelk for each coordinate directiondk

i

(associated with theith finite element function	k

i

on levelk) a coordinate relaxation scheme
is applied, i.e. one computes the minimum
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The decisive point for an efficient implementation of RQMG isthe appropriate choice of the
restriction operators, which enable anexact representation of the Rayleigh quotient of the
final level on all coarser grids. The convergence theory for RQMG, also showing its grid
independent convergence, is given in [22, 88]. The RQMG method has been integrated into
an adaptive 2D Helmholtz eigensolver used for designing integrated optical chips [28, 44]. A
generalization to a subspace scheme for non-self adjoint elliptic operators has been devised by
Deuflhard et al. [44].

Other variants of multigrid eigensolvers for elliptic differential operators working with
optimal or quasi-optimal computational complexity have been invented, e.g. for a selection of
those by Russian (co)authors see Astrakhantsev [2], Strakhovskaya and Fedorenko [125, 126]
as well as Chan and Sharapov [23].

A fair comparison of the efficiency of different multigrid schemes is a difficult task as
the methods often have a somewhat different scope and, therefore, their implementations are
not optimized to treat a common test problem in the most efficient way. Nevertheless, the
numerical tests in [82] give no indication on the superiority of one of the tested schemes.

1.2 A hierarchy of preconditioned eigensolvers

In this section we would like to propose anew framework for preconditioned eigensolvers.
Within this framework we recover not only the scheme of preconditioned inverse iteration
(see interpretation 4 in Section 1.1.4) as the most simple representative, but also the well-
knownPreconditioned steepest descentmethod and theLocally optimal Block Preconditioned
Conjugate Gradient(LOBPCG) scheme [5].

Our aim is to show how these eigensolvers (together with someof their variants) can
systematically be derived as iterations approximating some modification ofsubspace iteration
with an improved computation of the Rayleigh-Ritz approximations.

Remark 1.2 (Reduction to the standard eigenproblem).For the sake of clear and succinct
representation we consider in the following only the standard eigenvalue problem, i.e. we
formally setM = I in (1.2). To justify this simplification, one exploits the fact thatM is
a symmetric positive definite matrix and thus defines the inner product (�;M �). With respect
to this inner productM�1

A andM�1

B are symmetric positive definite matrices, too. Now
changing at once

(�; �)! (�;M �); A!M

�1

A; B !M

�1

B;

transforms the eigensolver (1.8) for the generalized eigenproblem applied to(A;M) to that
for the standard eigenproblem forA, i.e.

x

0

= x� !B

�1

(Ax� �(x)x); with �(x) =

(x;Ax)

(x; x)

:

Beyond that, this transformation does not change the form ofthe quality condition (1.7) on the
preconditioner, see also [97] and Theorem 4 in [73].
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1.2.1 Subspace iteration

Let us start with a description of subspace iteration, whichis the straightforward generalization
of the power method or inverse iteration. Subspace iteration schemes were mainly developed
in the 1960s and 1970s, see Chatelin [24] or Parlett [107]. Inthis work we are only interested
in determining several of thesmallesteigenvalues ofA together with the invariant subspace.
Hence, we will only discuss subspace iteration forA

�1 (instead of that forA), whereA is
assumed to be a symmetric and positive definite matrix.

Subspace iteration is based on the following conception: Given a subspaceS of theRn

having the dimensions, then repeated application ofA�1 defines the Krylov space

K(S) = spanfS; A

�1

S; A

�2

S; : : :g: (1.21)

Let S be spanned by the columns of[z
1

; : : : ; z

s

℄ 2 R

n�s . It is well known that each column
of A�jS, for j = 1; 2; : : :, will converge to an eigenvector associated with the smallest eigen-
value as long as none of thez

1

; : : : ; z

s

is orthogonal to the invariant subspace to�
1

. Since
eachA�jz

i

, i = 1; : : : ; s, will converge to that invariant subspace, orthogonality between
theA�jz

i

gets more and more lost, in particular if�
1

is a non-degenerate eigenvalue. Then
A

�j

[z

1

; : : : ; z

s

℄ will become a very poor basis for the “good” subspaceA

�j

S. The idea of
subspace iteration consists in iteratively constructing an orthonormal basisV

j

of A�jS in the
following way:

Algorithm 1.3 (Subspace iteration, INVIT(1,s)).

i. Compute an orthonormal basisV
1

2 R

n�s of S.

ii. For j � 1 solveAU
j+1

= V

j

for U
j+1

and determine an orthonormalV
j+1

with the same
column space asU

j+1

.

Orthonormalization can either be carried out with the Gram-Schmidt or the Rayleigh-Ritz
procedure [107] (where a clever implementation is available which avoids extra matrix-vector
multiplications in order to form the Rayleigh-Ritz projection, see Parlett [107, Section 14.2]
and Contribution II/9 in Wilkinson and Reinsch [142]). Here, we preferV

j+1

to be computed
by means of the Rayleigh-Ritz procedure so that the columns of V

j+1

consist of Ritz vectors
which are in several senses the optimal eigenvector approximations.

One might look upon subspace iteration as an outdated algorithm since more efficient
Krylov subspace algorithms have been developed within the last two decades. Parlett [107]
describes two conditions under which subspace iteration still appears attractive.

1. For very large problems the computer storage may be so limited that one can only hold
a fixed small number of vectors. Under those circumstances one is forced to discard
previous vectors from the Krylov space. Subspace iterationis the resulting method.
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2. Whenever the relative gap between the wanted eigenvaluesand the remaining ones is
sufficiently large, subspace iteration may converge in onlya few steps. In these situ-
ations the superior properties of methods working on full Krylov space (like Lanczos)
are given no chance.

The first argument fully applies to the problems we intend to solve (while the second point
is most striking if a shifted iteration operator likeA � �I is applied). Discretizations of
partial differential operators often lead to extremely large problems and only a small number
of vectors, say less then 10, can be stored.

The pleasant feature of subspace iteration, namely thatA is neither modified nor needs
to be known explicitly, applies, for instance, to finite element methods. Finite element codes
typically provide only routines for computingAx: EitherA is stored in some sparse matrix
format or the matrix-vector productAx is evaluated by a local compilation procedure. But
in order to implement subspace iteration forA�1, we need a linear system solver. In the
context of discretized partial differential operators, these solvers are built on iterative methods
(like multigrid or domain decomposition) and their application can be represented by some
preconditioner, see Sections 1.1.3 and 1.1.5.

In order to prepare the ground for introducingpreconditioned subspace iteration, we define
some variant of subspace iteration in which the Rayleigh-Ritz procedure is applied to some
enlarged subspace. The simple idea is to hasten convergenceby adding to the subspaceU

j+1

(to which Rayleigh-Ritz [107] is applied in Algorithm 1.3) anumber ofk � 1 of the previous
subspacesV

j

; : : : ; V

j�k+2

. Then Rayleigh-Ritz (RR) works on a subspace, having the dimen-
sionks, andV

j+1

is formed by thes Ritz vectors corresponding to thes smallest Ritz values.
The Courant-Fischer principle [107] guarantees that thes smallest Ritz values computed in
this way are smaller than those computed by standard subspace iteration.

Algorithm 1.4 (Subspace iteration with improved RR projection, INVIT(k,s)).
i. Initialization: Given a subspaceS compute orthonormal bases ofV

1

; : : : ; V

k�1

2 R

n�s

of thek � 1 subspaces
S; A

�1

S; : : : ; A

�(k�2)

S:

ii. Iteration: For j = k � 1; k; k + 1; : : : solve the linear system

AU

j+1

= V

j

(1.22)

for U
j+1

and apply Rayleigh-Ritz to the system ofk subspaces

[V

j�k+2

; : : : ; V

j

; U

j+1

℄ 2 R

n�ks

:

Then letV
j+1

= [v

1

; : : : ; v

s

℄, wherev
i

denote thes orthonormal Ritz vectors associated
with thes smallest Ritz values.

There is no necessity to define a new Krylov space for Algorithm 1.4, since the iterates of
the improved subspace iteration are enclosed inK(S).
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1.2.2 Preconditioned subspace iteration

We have introduced two variants of subspace iteration and wewill now present its precondi-
tioned variants. First let us introduce some naming allowing their classification. Algorithm 1.3
is called INVIT(1,s), expressing that inverse iteration (INVIT) is applied to ans-dimensional
initial subspaceS and that Rayleigh-Ritz only works on the single spacespan(U

j+1

). In con-
trast to this, Algorithm 1.4 is denoted INVIT(k,s) since Rayleigh-Ritz works on thek previous
iteratesV

j

of the Krylov space (1.21). To be consistent with the usual nomenclature we abbre-
viate INVIT(1,1) by INVIT.

Let us now solve Equation (1.22) approximately by using preconditioning. As pointed out
in [98], a necessary prerequisite for applying preconditioning is to substitute (1.22) by

AU

j+1

= V

j

�

j

; (1.23)

where�
j

= diag(�

1

; : : : ; �

s

) = V

T

j

AV

j

is the diagonal matrix of the actual Ritz values giving
rise to some column scaling ofV

j

. Observe that the choice of these (nonzero) scaling constants
is immaterial for inverse iteration, since the convergencemeasures (like the Rayleigh quotient
or the angle enclosed with invariant subspaces ofA) do not depend on scaling. But scaling
has the positive effect that the residual matrix

R := AV

j

� V

j

�

j

converges to the zero matrix as the subspace spanned byV

j

converges to an invariant subspace
of A. This paves the way for the application of the preconditioner B�1, which is assumed to
satisfy (1.7). We get the update formula

~

U

j+1

= V

j

�B

�1

(AV

j

� V

j

�

j

); (1.24)

where~U
j+1

approximates the solutionU
j+1

of (1.22).
Let us define the scheme PINVIT(k,s) of preconditioned (modified) subspace iteration.

Algorithm 1.5 (Preconditioned subspace iteration, PINVIT(k,s)).

i. Compute an orthonormal basis ofV
1

of S and additionallyk � 2 orthonormal bases
V

2

; : : : ; V

k�1

2 R

n�s , for instance by using PINVIT(j,s) forj = 2; : : : ; k � 1.

ii. For j � k � 1 let
~

U

j+1

:= V

j

�B

�1

(AV

j

� V

j

�

j

) (1.25)

and apply Rayleigh-Ritz to

[V

j�k+2

; : : : ; V

j

;

~

U

j+1

℄ 2 R

n�ks

:

ThenV
j+1

= [v

1

; : : : ; v

s

℄ is composed of thes Ritz vectors belonging to thes smallest
Ritz values.
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(Preconditioned) subspaceVector iteration schemeNo Rayleigh-Ritz

iteration with RR dim(S) = 1 k = 1

 = 0 INVIT(k,s) INVIT(k) INVIT

 � 0 PINVIT(k,s) PINVIT(k) PINVIT

Table 1.2:Classification of (preconditioned) subspace iteration schemes

Remark 1.6. If k > 1, we simply write (instead of (1.25))

~

U

j+1

:= B

�1

(AV

j

� V

j

�

j

);

since thenV
j

is contained in the subspace to which Rayleigh-Ritz is applied.

First observe that the iterates of PINVIT(k,s) are not contained in the Krylov space (1.21).
See Knyazev [72] for the definition of a generalized Krylov space ^

K based on polynomials
of two independent variables and which contains the iterates of PINVIT(k,s). Note that for a
more and more accurate preconditioner the acute angle℄(

^

K;K) between these Krylov spaces
tends to 0. Accordingly, PINVIT(k,s) reduces to INVIT(k,s)for accurate preconditioning,
which meansB = A or  = 0 with respect to (1.7).

For a major part in this work we will discuss the preconditioned vector schemes PIN-
VIT(k,1) which we abbreviate, for simplicity, by PINVIT(k). If additionally no Rayleigh-Ritz
is applied, i.e.k = 1, we will simply write PINVIT instead of PINVIT(1), in accordance with
the usual notation used in [95, 96]. Table 1.2 summarizes thenotation.

In order to code the eigensolvers PINVIT(k,s) we first have toprovide a routine computing
the productAx for givenx, and secondly, a procedure which gives backB

�1

x, whereB�1 is
an approximate inverse (or preconditioner) ofA. Finally, the application of the Rayleigh-Ritz
procedure requires the computation of additional matrix-vector products withA and several
inner products.

Let us now state in Lemma 1.7 that PINVIT(m,s) converges stepwise faster than PIN-
VIT(k,s) if m > k. Admittedly, its proof is a simple consequence of the min-max prin-
ciples. Nevertheless, its statement is worthwhile, since we will presentsharpestimates for
PINVIT(1,s) in this work. These bounds can serve as trivial upper estimates for PINVIT(k,s),
k � 2. It is important to note, that these estimates, at least fork > 2, are the best non-
asymptotic estimates so far available. See also Chapter 6 for PINVIT(2) convergence esti-
mates.

Lemma 1.7. If m; s 2 N, then PINVIT(m,s) form � k does not converge more slowly than
PINVIT(k,s) in the following sense: For thes smallest Ritz values�(m)

i

computed from the
subspace

[V

j�m+2

; : : : ; V

j

;

~

U

j+1

℄ 2 R

n�ms
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and thes smallest Ritz values�(k)
i

determined from[V
j�k+2

; : : : ; V

j

;

~

U

j+1

℄ 2 R

n�ks it holds
that

�

(m)

i

� �

(k)

i

; i = 1; : : : ; s:

2

1.2.3 Subspace iteration and gradient type schemes

Having introduced the shorthand notation PINVIT(k,s), letus now recover those eigensolvers
which are customarily subsumed under these synonyms. Fork = 1; 2; 3 the following names
are used in the literature:

PINVIT Preconditioned gradient method/Preconditioned inverse iteration,
PINVIT(2) Preconditioned steepest descent,
PINVIT(2,s) Preconditioned block steepest descent,
PINVIT(3) LOPCG, Locally Orthogonal Preconditioned Conjugate Gradient,
PINVIT(3,s) LOBPCG, Locally Orthogonal Block PCG.

Our aim is now to make clear that the preconditioned eigensolvers PINVIT(k,s) are in no
sense “close” to gradient type eigensolvers. Instead, by the derivation of these schemes in the
last section, thepreconditioned eigensolvers approximate subspace iteration for A�1, while
gradient type eigensolvers are associated with subspace iteration forA.

To explore these relations, we insertB = I, an extremely poor choice of the precondi-
tioner, into the schemes PINVIT(1) and PINVIT(2):

1. PINVIT forB = I reduces to

(x; �) �! (x

0

:= x� (Ax� �x); �(x

0

)); (1.26)

which is simply the gradient method (1.5) for! = 1.

2. In the same way the choiceB = I leads from PINVIT(2) to

(x; �) �! (v

1

(V ); �

1

(V )) with V = [x;Ax℄; (1.27)

wherev
1

is the Ritz vector to the smallest Ritz value�
1

of V . We rewrite this as

(x; �) �! (x

0

:= x� !(Ax� �x); �

0

:= �(x

0

)); (1.28)

where! minimizes the Rayleigh quotient ofx0. This makes it understandable why
(1.27) and (1.28) are calledsteepest descentfor the Rayleigh quotient; cf. Section 1.1.2
and the last column of Table 1.3.
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Therefore, forB = I both schemes act in the Krylov space

~

K = spanfS; AS; A

2

S; : : :g;

associated withsubspace iteration forA. We emphasize that the choiceB = I is way out
from our quality conditions (1.6) and (1.7) on the preconditioner. InsertingB = I in (1.7)
results in

kI � Ak

A

= kI � Ak

2

� �

max

(A):

Since the latter quantity behaves likeh�2 for the discrete Laplacian�
h

, it holdskI�Ak
2

� 1

in any interesting case. Hence, the choiceB = I does not meet the quality conditions on the
admissible preconditioners. In other words, there is no admissible preconditioner making
PINVIT(1) or PINVIT(2) reduce to the gradient method (1.26)or steepest descent (1.27). For
this reason we prefer to consider our class of preconditioned eigensolvers as preconditioned
inverse iteration and most often avoid to call them preconditioned gradient schemes.

In Table 1.3 we summarize the mentioned relations between PINVIT(k,1) and INVIT(k,1)
for k = 1; 2; 3 as well as the corresponding gradient schemes; the shorthand notationx[�m℄ is
used to denote older iterates.

1.2.4 Generalized inexact solvers

The idea underlying the derivation of the preconditioned subspace schemes PINVIT(k,s) in
Section 1.2.2 can be generalized to an inner-outer loop structure solver, realizing some form
of inexact inverse iteration. The outer loop is based on a shift-and-invert transformation,
i.e. inverse iteration with a shift or the Rayleigh quotientiteration. Multigrid preconditioning
of indefinite matrices is a delicate task [99, 130, 145, 146];we do not analyze eigensolvers
based on preconditioning for indefinite matrices in the present work. The inner loop can be
realized by any (approximate) linear solver, possibly a Krylov subspace solver can be used.

Iterative eigensolvers based on this idea have been suggested by Smit and Paardekooper
[123] and Golub and Ye [49] and Lai, Lin and Lin [77]. In all these works a stopping condi-
tion for the inner iteration is constructed, guaranteeing that the outer loop converges at least
linearly. Thus the threshold parameter is the central control parameter for the rate of conver-
gence. The convergence analysis is based on a decompositionof the iteration vector in the first
eigenvector and its orthogonal complement. The geometric way of decomposing the iterates
in [123] resembles, in some sense, the one used in the presentwork.

The main difference between [49, 77, 123] and this work is that the stopping condition in
the cited papers is ana posterioricriterion. In our setup the quality condition (1.7) on the
preconditioner should be considered as ana priori criterion. Therefore, we do not see any
necessity to describe PINVIT as an inner-outer iteration scheme. In other words, we do not
consider multiple inner solution steps for two reasons: On the one hand, any multiple-step
inner solver can be substituted by a one-step solver based ona more accurate preconditioner.
On the other hand, we emphasize that an accurate linear solver does not pay out in general.
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Subspace Iteration withPreconditioned Subspace IterationExact preconditioning No preconditioning

k improved RR projectionwith improved RR projection B = A or  = 0 B = I

k = 1 INVIT PINVIT scaled INVIT Gradient method

x! x

0

= A

�1

x x! x

0

= x�B

�1

(Ax� �x) x! x

0

= �A

�1

x x! x

0

= x� (Ax� �x)

�! �(A

�1

x) �! �(x

0

) �! �(A

�1

x) �! �(x

0

)

k = 2 INVIT(2) PINVIT(2), also called INVIT(2) Steepest descent

Preconditioned Steepest Descent

(x; �)! (v

1

(V ); �

1

) (x; �)! (v

1

(V ); �

1

) (x; �)! (v

1

(V ); �

1

) (x; �)! (v

1

(V ); �

1

)

V = [x;A

�1

x℄ V = [x;B

�1

(Ax� �x)℄ V = [x; �A

�1

x℄ V = [x;Ax� �x℄

k = 3 INVIT(3) PINVIT(3), also called INVIT(3) “Generalized gradient

LOBPCG fors � 1, [72]. type method”

(x; �)! (v

1

(V ); �

1

) (x; �)! (v

1

(V ); �

1

) (x; �)! (v

1

(V ); �

1

) (x; �)! (v

1

(V ); �

1

)

V = [x

[�1℄

; x; A

�1

x℄ V = [x

[�1℄

; x; B

�1

(Ax� �x)℄ V = [x

[�1℄

; x; �A

�1

x℄ V = [x

[�1℄

; x; Ax� �x℄

...
...

...
...

...
...

...
...

...
...

k 2 N INVIT(k) PINVIT(k) INVIT(k)

(x; �)! (v

1

(V ); �

1

) (x; �)! (v

1

(V ); �

1

) (x; �)! (v

1

(V ); �

1

) (x; �)! (v

1

(V ); �

1

)

V =[x

[2�k℄

; : : :; x; A

�1

x℄ V =[x

[2�k℄

; : : :; x; B

�1

(Ax� �x)℄ V =[x

[2�k℄

; : : :; x; A

�1

x℄ V =[x

[2�k℄

; : : :; x; Ax� �x℄

Table 1.3: The hierarchy of preconditioned eigensolvers PINVIT(k,s), heres = 1.
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Fastest convergence of the preconditioned eigensolvers PINVIT(k,1) is not guaranteed by exact
preconditioning!For the analysis proving the latter proposition, we refer toChapter 3 and to
the estimates presented in Chapter 4. There we can constructspecific preconditioners, which
are poor for the solution of linear systems inA, but which, at the same time, may make one-
step convergence of the eigensolver possible.

So far no decisive answer is available concerning the question of whether positive defi-
nite or indefinite preconditioners (e.g. approximating theRayleigh quotient iteration) lead to
more efficient algorithms, cf. Knyazev [71]. This opens the question of how accurately the
associated equations are to be solved in order to achieve a reasonable speed of convergence
[49, 77, 123]. In any way the cubic convergence of the Rayleigh quotient iteration cannot be
transferred to the preconditioned multigrid case.

1.3 An application: Electronic structure theory

As a challenging area of application of multigrid preconditioned eigensolvers, we would like to
highlight themolecular electronic structure theoryas a subfield of quantum theory, which was
founded by Schrödinger and Heisenberg between 1924 and 1926. As early as in 1929 Dirac
formulated [29]: “The physical laws necessary for the mathematical theory of a large part of
physics and the whole chemistry are thus completely known, and the difficulty is only that the
exact application of these laws leads to equations much too complicated to be soluble.” These
difficulties have not been surmounted yet: Even under several simplifications of the governing
principles/equations, the numerical treatment of such problems is often extremely expensive.

The neglect of time-dependent interactions in (parts of) the molecular electronic structure
theory [127] allows us to restrict ourselves to thetime-independent non-relativistic Schrödinger
equation

H	 = E	: (1.29)

For an isolatedN -electron atomic or molecular system in the Born-Oppenheimer approxi-
mation (which treats the nuclei as stationary sources of an electric field rather than as true
particles), the Hamiltonian operator in atomic units reads

H = �

N

X

i=1

1

2

�(r

i

) +

N

X

i=1

v(r

i

) +

N

X

i<j

1

r

ij

:

Therein,r
i

is the space coordinate of theith electron, andr
ij

(r
i�

) are its distances to the
electronj (the nucleus�). In addition,v(r

i

) =

P

�

Z

�

=r

i�

denotes the potential acting on the
electroni, which is induced by the nuclei� with the chargesZ

�

.
Hence the Schrödinger equation is a differential eigenvalue problem for the wave function

	 = 	(r

1

; s

1

; r

2

; s

2

; : : : ; r

N

; s

N

); (1.30)
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which depends on ther
i

and spin coordinatess
i

, i = 1; : : : ; N . Each eigenvalueE is consid-
ered as the energy related to the corresponding eigenstate	.

The Hartree-Fock approximationis the most importantorbital methodfor solving the
molecular Schrödinger equation. To this end, the Hartree-Fock equations are discretized with
respect to a linear expansion of the unknown molecular orbitals. The resulting set of equations
for the expansion coefficients are called the Roothaan equations—they represent a nonlinear
generalized eigenvalue problem, which is solved iteratively by theself-consistent fieldproce-
dure. The resulting Hartree-Fock wave functions provide anapproximate solution of (1.29)
for closed-shell molecules.

As motivated by physical/chemical considerations, the wave function is usually expanded
in Slater or contracted Gaussian functions, which are essentially the one-electron wave func-
tions of the hydrogen atom. By using such a basis, the overallalgorithm allows us to treat even
relatively large (organic) molecules. The major drawback of the Hartree-Fock-Roothaan ap-
proach is its computational complexity, which increases asO(M

4

) in the numberM of basis
functions. This unfavorable scaling is a consequence of theM

4 two-electron integrals, which
are needed to form the discrete Fock operator. Considerableeffort has been made to reduce
this order and several more elaborate schemes have been devised in the last decade [102].

From the view of numerical analysis, it is also tempting to expand the wave function in
terms of finite element functions. This can be done successfully (in spite of their bounded
support) for relatively small molecules, like the hydrogenmolecule, for which the molecular
symmetry can be exploited in an advantageous way [134]. The major difficulty concerning the
application of the finite element method is that the wave function, as given by (1.30), depends
on the (large) number of3N spatial coordinates.

A promising way to reduce this high-dimensional problem is thedensity functional theory
[108], which states that the ground state wave function is determined by the electron density
�(x) in such a way that one can work without loss of rigor with the electron density�(r).
Since the electron density depends on only 3 spatial variables, one can classify computational
schemes derived from the density functional theory asreal-spacemethods. Within this the-
ory one has to solve the Kohn-Sham equations (1.31), which represent a low dimensional
approximation to ab-initio quantum chemistry, i.e, one hasto determine theN eigenfunctions
(representing theN electrons) belonging to the smallest eigenvalues�

i

of the problem

(��+

^

V ) 

i

(x) = �

i

 

i

(x); x 2 
;

 

i

(x) = 0; x 2 �
;

(1.31)

for a bounded domain
 = [0; L℄

3, L > 0. Therein, ^V is a symmetric non-local operator,
which depends on the positions of the nuclei and on global integrals involving the (unknown)
eigenfunctions. For problems of electronic structure theory, the spectrum of the operator��+

^

V is bounded from below and the (possibly multiple) smallest eigenvalues of interest are
negative.

The central tasks are to solve not only an eigenvalue problemfor the Laplacian but also
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to determine the global integrals by solving the Poisson equation. Therefore, the outlined
situation fits perfectly into the setup of multigrid preconditioned eigensolvers as presented in
this work. (With a proper shift one can transform (1.31) intoa coercive problem.) Both solvers
scale likeO(N) and the well-understood multigrid preconditioners for theLaplacian can be
used.

Within the density functional theory and by using the outlined approximations and tech-
niques, very recent results show that the entire problem canbe solved numerically with only
O(N logN), or even betterO(N), operations [9, 19, 40, 133].

1.4 Model analysis of inverse iteration

We conclude Chapter 1 with a model analysis ofinverse iteration(INVIT) in which we high-
light inverse iteration as adescent method for the Rayleigh quotient.

Obviously, we do not claim to present new results for the well-understood and simple
scheme of inverse iteration [24, 107, 136]. The aim of this section is to point out an unusual
representation of the convergence results for INVIT as given by Theorem 1.8 and Corollary
1.10. This includes the introduction of some convergence measures in terms of the�

p;q

ratios,
see Equation (1.37). Additionally, we would like to introduce theLagrange multiplier method
as a valuable tool for analyzing eigensolvers, see the proofof Theorem 1.8. In the following
chapters of this work the Lagrange multiplier method turns out very useful for the PINVIT(k)
analysis. In some sense the analysis of INVIT given here has some model character as its
convergence estimates can be derived in an easy way. In contrast to this, it will cost us much
more effort to derive comparable convergence estimates based on similar measures for the
(improved) techniques PINVIT(1), INVIT(2) and PINVIT(2).

Inverse iteration is a simple vector iteration for computing the eigenvalue with the smallest
absolute value together with an eigenvector of a regular symmetric matrix. Inverse iteration
goes back to Wielandt [136], see also [63] for remarks on its history. Here we consider inverse
iteration without a shift. Given a regular and symmetricA 2 R

n�n with real eigenvalues0 <
j�

1

j < j�

2

j � : : : � j�

n

j (we denote the corresponding normed eigenvectors byx

1

; : : : ; x

n

),
then the “standard” convergence analysis is based on an eigenvector expansion of an initial
vectorx =

P

n

i=1

�

i

x

i

. We assume�
1

6= 0. Hence, in

A

�1

x =

n

X

i=1

�

i

�

i

x

i

all components with indexesi 6= 1 are damped out relatively and, therefore, inverse iteration
converges linearly to the smallest eigenpair(x

1

; �

1

). Equivalently, one can employ a two di-
mensional analysis in the plane containing the actual iterate and the wanted eigenvector. Once
more, all components orthogonal to the wanted eigenvector are damped out. See Chatelin
[24], Golub and van Loan [48], Parlett [107] and Stoer and Bulirsch [124].
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Here we pursue an alternative approach to a convergence analysis of inverse iteration which
is restricted to symmetric and positive definite matrices. For this class of matrices inverse
iteration can be seen as adescent method for the Rayleigh quotient. To be precise, the iterates
form a sequence of vectors with amonotone decreasingRayleigh quotient. The Rayleigh
quotients are guaranteed to converge toan eigenvalue ofA. Under the assumptions of the
following theorem this limit is not necessarily the smallest eigenvalue�

1

but possibly a larger
eigenvalue; cf. Remark 1.9. Nevertheless, the sequence of vector-iterates is guaranteed to
converge to a corresponding eigenvector ofA.

In the next theorem, we present sharp bounds from above and below for the decrease of
the Rayleigh quotients of the INVIT iterates.

Theorem 1.8.Consider a symmetric positive definite matrixA 2 R

n�n having the eigenpairs
(x

i

; �

i

) and0 < �

1

< �

2

< : : : < �

n

. For any nonzero initial vectorx(0) the iteratesx(k) of
inverse iteration

A~x

(k+1)

= x

(k)

; x

(k+1)

=

~x

(k+1)

k~x

(k+1)

k

; k = 0; 1; : : : ;

converge to an eigenvector ofA, and the�(x(k)) converge to the corresponding eigenvalue. If
the Rayleigh quotient� = �(x

(k)

) of the actual iterate satisfies� 2 (�

i

; �

i+1

) for somei with
1 � i < n, then it holds a sharp estimate from below and above for the Rayleigh quotient of
x

(k+1)

B(�

1

; �

n

; �) � �(x

(k+1)

) � B(�

i

; �

i+1

; �) < �; (1.32)

where
B(�

p

; �

q

; �) =

�

�

�1

p

+ �

�1

q

� (�

p

+ �

q

� �)

�1

�

�1

: (1.33)

Proof. Let UT

AU = �, where� = diag(�

1

; : : : ; �

n

), and letx be the actual iterate. Then
v = U

T

x is the coefficient vector with respect to the basis of eigenvectors. We obtain for the
Rayleigh quotient ofA�1x

�(A

�1

x) =

(v;�

�1

v)

(v;�

�2

v)

=: �

0

:

In order to determine the extrema of�0 with respect to allx 2 R

n with (x; x) = 1 and
(x;Ax) = � we apply the method of Lagrange multipliers. The Lagrange functionL(v; �; �)
reads

L(v; �; �) =

(v;�

�1

v)

(v;�

�2

v)

+ � ((v; v)� 1) + � ((v;�v)� �) :

A necessary condition for the existence of extrema is

rL =

2

(v;�

�2

v)

�

�

�1

v � �

0

�

�2

v

�

+ 2�v + 2��v = 0: (1.34)

Since� 6= �

i

, i = 1; : : : ; n, the vectorv is not collinear to any of the eigenvectors. Hence,v

has at least two nonzero componentsv

k

andv
l

with �
k

6= �

l

. Takek as the smallest index that
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v

k

6= 0. Such a choice implies�
k

< �

0. We determine the Lagrange multipliers� and� from
Equation (1.34) by solving the linear system

�

1 �

k

1 �

l

��

�

�

�

=

1

(v;�

�2

v)

�

�

0

�

�2

k

� �

�1

k

�

0

�

�2

l

� �

�1

l

�

with a nonvanishing determinant. Its unique solution reads

� =

�

2

l

(�

0

� �

k

) + �

2

k

(�

0

� �

l

) + �

k

�

l

�

0

�

2

k

�

2

l

(v;�

�2

v)

;

� =

�

k

�

l

� �

0

(�

k

+ �

l

)

�

2

k

�

2

l

(v;�

�2

v)

:

Inserting� and� in the coefficient of thejth component of Equation (1.34) results in

1

(v;�

�2

v)

(�

�1

j

� �

0

�

�2

j

) + �+ ��

j

= �

(�

l

� �

j

)(�

k

� �

j

)�

�

2

k

�

2

l

�

2

j

(v;�

�2

v)

:

where
� = ��

k

�

l

�

j

+ �

0

(�

k

�

l

+ �

k

�

j

+ �

l

�

j

) > �

2

k

(�

l

+ �

j

) > 0;

since�0 > �

k

. Hence,v
j

= 0 for all �
j

different from�

k

and�
l

. The nonzero componentsv
k

andv
l

can be determined fromkxk = 1 and�(x) = �. We obtain

v

2

k

=

�

l

� �

�

l

� �

k

; and v

2

l

=

�� �

k

�

l

� �

k

: (1.35)

Inserting these in�0 = �(�

�1

v) results in

�

0

=

�

k

�

l

(�

l

� �

k

)(�

k

+ �

l

� �)

�

3

l

� ��

2

l

+ ��

2

k

� �

3

k

=

�

�

�1

k

+ �

�1

l

� (�

k

+ �

l

� �)

�1

�

�1

= B(�

k

; �

l

; �):

Since for�
k

� �

i

< � < �

i+1

� �

l

we have

�

��

k

B(�

k

; �

l

; �) > 0 and
�

��

l

B(�

k

; �

l

; �) < 0;

so that the boundB(�
k

; �

l

; �) takes its maximum inB(�
i

; �

i+1

; �) while its minimum is taken
in B(�

1

; �

n

; �) from which (1.32) follows.
The iterates of inverse iteration form a sequence of vectorswith a decreasing Rayleigh

quotient. It is a converging sequence since the Rayleigh quotient is bounded from below by
�

1

. Hence�(x(k))��(A�1x(k)) converges to 0. The residualr(y) := Ay��(y)y in y = A

�1

x

can be estimated from above by�(x)� �(A

�1

x) as follows. First, it holds

kr(A

�1

x)k

2

A

= kA(A

�1

x)� �(A

�1

x)A

�1

xk

2

A

= �(x)� 2�(A

�1

x) +

�

�(A

�1

x)

�

2

(x;A

�1

x): (1.36)
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Figure 1.2:
BoundsB(�

1

; �

n

; �) (solid line) and
boundsB(�

i

; �

i+1

; �), i = 1; : : : ; 4, (dot-
ted lines) for a model matrix with eigen-
values(�

1

; : : : ; �

5

) = (2; 5; 8; 10; 13).
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Figure 1.3:
Convergence factors�2 by Corollary 1.10.
Factor �

1;n

= �

1

=�

n

(solid line) and
�

i;i+1

= �

i

=�

i+1

, i = 1; : : : ; 4, (dotted
lines) for the situation as in Figure 1.2.

By the Cauchy-Schwarz inequality we have(x;A�1x) � (x;A

�2

x)(x; x) and hence
�

�(A

�1

x)

�

2

(x;A

�1

x) � �(A

�1

x):

Inserting this in (1.36) results in

kr(A

�1

x)k

2

A

� �� �(A

�1

x):

Therefore, the residuals converge to 0, i.e. the iterates converge to an eigenvector and the
Rayleigh quotients converge to the corresponding eigenvalue. Finally, we note that the bound
B(�

p

; �

q

; �) in (1.32) is attained ifx(k) is constructed as in Equation (1.35).

Remark 1.9. It is well known from the linear-algebra-textbook convergence theory of inverse
iteration that INVIT converges to the smallest eigenvalue�

1

and to one of its corresponding
eigenvectors, whenever the initial vectorx(0) is not perpendicular to the invariant subspace
to �

1

. In practice the latter condition is nearly always fulfilleddue to rounding errors. The-
orem 1.8 does not contain such a condition controlling the spectral components ofx(0). We
deliberately give up such a condition in preparation of the convergence analysis of the precon-
ditioned eigensolvers: Any such information on spectral components ofx(0) is not preserved
for the PINVIT iterates (in contrast to those of INVIT!) as itis easy to construct specific pre-
conditioners which weed out or create contributions of specific eigenfunctions in the course
of the iteration. Such examples do not contradict the convergence in the sense of a decreasing
Rayleigh quotient! Consequently, on the assumption on Theorem 1.8 it cannot be guaranteed
that the�(k) converge to the smallest eigenvalue�

1

. The sharp upper bound for the decrease
of the Rayleigh quotients guarantees only convergence to the next smaller eigenvalue�

i

.
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Let us now define the ratio�
p;q

(�)

�

p;q

(�) :=

�� �

p

�

q

� �

; (1.37)

for which Corollary 1.10 describes an upper and lower bound for the convergence factors of
inverse iteration. The�

p;q

factors will achieve central importance in Chapter 4 since they
make a very short form of the PINVIT estimates possible.

Corollary 1.10. It holds

�

p;q

(B(�

p

; �

q

; �)) = (�

p;q

)

2

�

p;q

(�): (1.38)

Moreover, if�(x(k)) 2 (�

i

; �

i+1

), then

�

i;i+1

(�(x

(k+1)

)) � (�

i;i+1

)

2

�

i;i+1

(�(x

(k)

)) (1.39)

and
�

1;n

(�(x

(k+1)

)) � (�

1;n

)

2

�

1;n

(�(x

(k)

)) (1.40)

where the convergence factor�
p;q

is given by

�

p;q

=

�

p

�

q

:

Proof. To show (1.38) insert Equation (1.33) in�
p;q

(�). Then,

�

p;q

(B(�

p

; �

q

; �)) (�

p;q

(�))

�1

=

(�

�1

p

+ �

�1

q

� (�

p

+ �

q

� �)

�1

)

�1

� �

p

�

q

� (�

�1

p

+ �

�1

q

� (�

p

+ �

q

� �)

�1

)

�1

�

�� �

p

�

q

� �

�

�1

=

�

�

p

�

q

�

2

:

To prove (1.39) we take Equation (1.38) forp = i andq = i + 1. Then Inequality (1.32)
together with the monotonicity of�

p;q

(�) leads to

�

i;i+1

(�(x

(k+1)

)) � �

i;i+1

(B(�

i

; �

i+1

; �)) = (�

i;i+1

)

2

�

i;i+1

(�):

Inequality (1.40) is shown analogously.

Remark 1.11. The convergence factors�
p;q

in Corollary 1.10 do not depend on�. This
important feature (in contrast to the bounds presented in Theorem 1.8) permits the recursive
application of (1.39) so that for�(x(0)) 2 (�

1

; �

2

) it holds that

�

1;2

(�(x

(k)

))

�

1;2

(�(x

(0)

))

�

�

�

1

�

2

�

2k

; k = 1; 2; : : : : (1.41)
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The chance to derive the sharp and simple recursive representation (1.41) in terms of the
�

p;q

ratios should be understood as the main incentive to work with these quantities in the
following chapters. For instance, in Chapter 4, the representation in terms of the�

p;q

allows
to drastically simplify the cumbersome PINVIT(1) estimates originally given in [95, 96].

In Figure 1.3 the�
p;q

factors are plotted versus� 2 [�

1

; �

n

℄; in each of the intervals
[�

i

; �

i+1

) they are constant. We will refer to these figures at several locations within this work
since they describe the limit case of PINVIT for exact preconditioning.

Remark 1.12. Theorem 1.8 is restricted to symmetric positive definite matrices only. To give
an example of an indefinite matrix, letA = diag(�3; 1; 2) with x = (1; 2; 2)

T . Then

�(A

�1

x) = 51=46 > �(x) = 1;

as the component to�
3

= �3 is damped out most rapidly. Therefore, inverse iteration isa
descent method for the Rayleigh quotient for positive definite (semidefinite) matrices only.
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2. PRECONDITIONED INVERSE ITERATION

As a first step toward the analysis of the hierarchy of preconditioned eigensolvers, which has
been introduced in Section 1.2, this chapter deals with the most simple method of this class.
This is the scheme ofpreconditioned inverse iteration, which derives from Algorithm 1.5 for
k = s = 1 and whose convergence theory has been given in [95, 96]. The aim of this chapter
is to review the central ideas underlying its convergence analysis: In Section 2.1.1 we first
compile the assumptions made on the preconditioners as usedthroughout this work. These
assumptions are typically fulfilled for (scaled) preconditioners based on classical multigrid or
domain decomposition schemes and therefore do not confine the generality of the approach
presented here. This is followed in Section 2.1.2 by the derivation of some convenient normal
form of these preconditioners, which turns out to be very useful, both for the representation of
our eigensolvers as well as for their analysis.

The key idea of the convergence analysis is to disregard the somewhat unpleasant behavior
of singlepreconditioners, but to apply (the set of)all admissible preconditioners to the actual
iterate, which results in a corresponding set of new iterates. The latter set, as a consequence of
the assumptions on the preconditioners, turns out as a ball (with respect to theA-norm) whose
center is given by the result of inverse iteration if appliedto the actual iterate, see Section 2.2.

A detailed insight into this geometry makes possible the localization of extremum points of
the Rayleigh quotient on these balls and proves as a valuabletool for the convergence analysis,
compare Section 2.4. In this chapter we restrict the analysis to vector schemes; corresponding
subspace schemes are described in Chapter 5 and [98].

2.1 Preconditioning for eigenvalue solvers

Preconditioning techniques for the solution of largelinear systemsof equations, as arising
from the discretization of (elliptic) partial differential operators in mathematical physics, are
well accepted tools to guarantee rapid convergence. Contrastingly, comparable precondi-
tionedeigensolversare relatively little known, though quite successful schemes have been
developed, e.g. eigensolvers based on multigrid preconditioning [75] with successful appli-
cations toO(N) density-functional theory methods [40], to structural mechanics [21] and to
the Maxwell equations [60], to mention only some areas. For amore detailed discussion, see



38 2. Preconditioned inverse iteration

Chapter 1, where further examples are reviewed showing thatpreconditioning in eigenvalue
computations is not limited to multigrid preconditioners.

Throughout this work we do not consider or construct specialpreconditioners for the eigen-
problem but use preconditioners originally designed for the solution of linear systems. Our aim
is to show that these preconditioners can successfully be applied to solve eigenvalue problems
resulting in highly efficient, stable and robust algorithmsthat converge with a grid-independent
rate.

Let us now point out some differences between optimal preconditioning (in the sense of
fastest convergence) for systems oflinear equationsand optimal preconditioning foreigen-
problems:

� Optimal preconditioning for the solution of linear systemsAx = b is done by the inverse
matrixB�1 = A

�1, which results in one-step convergence to theexactsolution. In the
following we refer to this choice asexact preconditioning.

� In contrast to this, the choiceB�1 = A

�1 as a preconditioner for eigenvalue problems
is obviously not optimal, since this will reduce Algorithm 1.5 to Subspace Iteration as
given by Algorithm 1.4. It is important to note that we are notinterested in an exact
solution of the system of linear equations associated with inverse iteration, but that we
want to compute the best possible eigenvalue/vector approximation that can be achieved
by the admissible preconditioners. The best preconditioner for the partial eigenvalue
problem (to determine the smallest eigenvalue�

1

together with the eigenvectorx
1

),
would result in a new iterate collinear tox

1

. Here we treat the question of how “close”
such an optimal preconditioner for the eigenvalue problem is to the set of admissible
preconditioners.

Surely, the action of any (algebraic) eigensolver, which computes an approximation to
x

1

, can be associated with an approximation to such an ideal preconditioner. But here we
do not deal with such ideal but usually expensive and in some sense unrealistic precondi-
tioning. In our setupoptimal preconditioningis done by that (unique) preconditioner in
the set of admissible preconditioners, which is responsible for the fastest decrease of the
Rayleigh quotient of the new iterate. A detailed analysis ofthis optimal preconditioning
is given in Chapter 3.

As a notable feature and strength of the present analysis, itcompletely separates the ques-
tions of the choice of the preconditioner and that of the linear algebra of the eigensolvers.
Hence, there is no need to discuss the construction or the underlying principles of precondi-
tioners. Let us briefly mention some important classes of preconditioners, e.g. preconditioners
based on classical (algebraic) multigrid methods or on domain decomposition schemes as well
as those based on incomplete factorizations. Several of these preconditioners have reached
practical importance in scientific and industrial applications. We refer to Bramble [14] for
multigrid preconditioning and to Saad [118] for a detailed introduction to preconditioning
techniques for general linear systems.
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Here, we do not consider shift-and-invert preconditioning[117], i.e. we only use approxi-
mate inverses of the system matrixA and not those of a shifted matrixA��I. Preconditioned
eigensolvers based on shift-and-invert techniques are characterized by a relatively fast con-
vergent outer loop iteration (for instance the shifted inverse iteration, the Rayleigh quotient
iteration or even the Arnoldi procedure). But the major drawback of these methods is to be
seen in the fact, that in the inner loop, they require a high accuracy solution of linear systems
in nearly singular matrices. As a central ingredient of suchschemes one has to devise a proper
stopping condition for the inner iteration. Finding and implementing such conditions is a non-
trivial task. Their appropriate choice appears decisive for the effectiveness of the inner-outer
loop scheme. These drawbacks hamper the efficiency of the eigensolver, lead to an increased
algorithmic complexity and result in a loss of practical robustness.

2.1.1 Assumptions on the preconditioners

The preconditioner (or approximate inverse)B

�1 for A is assumed to be a symmetric positive
definite matrix, which approximates the inverse ofA in such a way that

(1� )(x;Bx) � (x;Ax) � (1 + )(x;Bx); for all x 2 R

n

; (2.1)

where is a positive constant less than 1. We can rewrite (2.1) in twoalternative, but equiva-
lent forms: On the one hand, (2.1) says that

�

2

(B

�1

A) �

1 + 

1� 

for the spectral condition number�
2

of the preconditioned matrixB�1A. On the other hand,
(2.1) provides a bound for the operator norm induced byA (or, alternatively, for the spectral
radius) of the error propagation matrixI � B

�1

A in the form

kI �B

�1

Ak

A

� : (2.2)

Spectral assumptions like (2.1) are typical for multigrid or domain decomposition precon-
ditioners, leaving aside the fact that is not always amenable in practice, e.g. if one wants
to apply preconditioners based on incomplete (Cholesky) factorization. Nevertheless, even in
the latter cases the spectral condition number�

2

(B

�1

A) is a measure for the quality of the
preconditioner.

In the case of mesh eigenvalue problems we assume to beindependent of the mesh size,
which holds for the best multigrid/domain decomposition preconditioners [14]. Weakening
the latter assumption, i.e. allowing a slight dependence of on the mesh size would lead
to a comparable dependence for the convergence estimate of the associated preconditioned
eigensolver.
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Throughout this work we make use of the following definition of the setB


containing all
admissible preconditioners, i.e. those satisfying the condition (2.2),

B



= fB

�1

2 R

n�n

: B symmetric positive definite; jjI � B

�1

Ak

A

� g: (2.3)

As we will see, the setB


reflects the simple geometry underlying PINVIT, cf. the definition
by (2.12). The assumption (2.1) has not only been used in the convergence analysis of PINVIT
in [95, 96], but also for the analysis of the corresponding subspace scheme in [15, 98].

Preconditioners are sometimes characterized by the somewhat more general spectral equiv-
alence of the form

Æ

0

(x;Bx) � (x;Ax) � Æ

1

(x;Bx); for all x 2 R

n

; (2.4)

for positive constantsÆ
0

andÆ
1

.
As long asÆ

1

< 2 one can reformulate (2.4) in such a way that (2.1) holds, but this would
result in a loss of sharpness ifÆ

0

6= 2� Æ

1

. In general, the preconditioner can be scaled by

# =

2

Æ

0

+ Æ

1

; (2.5)

which leads to the smallest possible bound

kI � #B

�1

Ak

A

�

Æ

1

� Æ

0

Æ

0

+ Æ

1

< 1: (2.6)

In most situations# is not explicitly available. But note that the knowledge of# is only re-
quired for the most simple scheme PINVIT(1), since for the improved techniques PINVIT(k,s)
with k � 2 the choice of# 6= 0 is immaterial. This independence holds trivially, since inAl-
gorithm 1.5 any (nonzero) scaling of~U

j+1

has no influence on the result of the Rayleigh-Ritz
procedure. We summarize these considerations in Lemma 2.1.

Lemma 2.1. Scaling of preconditioners for the schemes PINVIT(k,s) fork � 2 is immaterial.
Hence, fork � 2 the convenient assumption (2.2) means no loss of generality.

In applications with a preconditioner satisfying only (2.4) (or whenever one is unsure about
the validity of (2.1)), we recommend to use the improved schemes PINVIT(k,s) fork = 2; 3.
For slightly higher costs (compared tok = 1) one can remedy the shortcoming of (2.4) and is
rewarded with improved convergence properties.

2.1.2 Normal form of preconditioners

As a preparatory step for the following analysis, we introduce in Lemma 2.2 some normal form
of the preconditioners contained inB



. Lemma 2.2, which generalizes Lemma 2.2 in [95],
shows that the degrees of freedom for constructingB

�1 consist in choosing some orthogonal
matrixV and some diagonal matrixD with bounded diagonal elements.
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Lemma 2.2. LetA;B 2 R

n�n be symmetric positive definite matrices with

kI � B

�1

Ak

A

�  (2.7)

for 0 �  < 1. Then there is an orthogonal matrixV 2 R

n�n and a diagonal matrix
D = diag(d

1

; : : : ; d

n

) 2 R

n�n with jd
i

j � 1, i = 1; : : : ; n; so that

B

�1

= A

�1

+ A

�1=2

V DV

T

A

�1=2

: (2.8)

If max

k

jd

k

j = 1, thenkI � B

�1

Ak

A

= .

Proof. LetB�1 = A

�1

+ Z. Then we have

kI � B

�1

Ak

A

= kA

1=2

ZA

1=2

k

2

whereA1=2

ZA

1=2 is a symmetric matrix. Hence,A1=2

ZA

1=2

= V DV

T for some orthogonal
V and diagonalD. The rest of the lemma can easily be verified.

In Equation (2.8) the preconditionerB�1 is generated by “perturbing” the inverse ofA
by A�1=2V DV T

A

�1=2. The latter term is generated byV DV T for some orthogonal matrix
V 2 R

n�n and an appropriate diagonal matrixD. If we substituteV DV T by some low-rank
modification of the identity matrix having the formI � 2V DV

T for orthonormalV 2 R

n�k ,
1 � k � n, then we obtain an alternative preconditioner

B

�1

:= A

�1

+ A

�1=2

(I � 2V DV

T

)A

�1=2

: (2.9)

SettingD = diag(d

1

; : : : ; d

k

) with jd
i

j � 1 results in a symmetric positive definite precon-
ditioner which satisfies (2.2). These preconditioners willbe useful in many respects in the
following analysis. As it will turn out later, the suprema ofthe Rayleigh quotient of the PIN-
VIT(k) schemes are located on the surface of the set of possible iterates. These extrema can
be generated by preconditioners for whichD, in (2.9), equals the identity matrixI 2 R

k�k .
Note that the choiceD = I in (2.8) for orthonormalV 2 R

n�k , k < n, is not appropriate to
generate the full surface, asV V T is a projector, whileI � 2V V

T in (2.9) is a reflection.

Reducing the degrees of freedom of (2.9) to a minimum resultsin preconditioners built
from Householder reflectionsH = I � 2vv

T , kvk = 1, in a way that

B

�1

= A

�1

+ ~A

�1=2

HA

�1=2 (2.10)

for 0 � ~ � . Obviously, the choice~ =  causes a bijection of the surface of the unit
ball, i.e.kvk = 1, to the surface of the set of possible PINVIT iterates. (Justnote that we will
exploit a comparable relation for PINVIT(2) later in Section 6.5.3.)

For a formal description of the set of iterates that can be attained by the PINVIT(k)
schemes, applyall preconditioners inB



to a fixedx, i.e. consider the mapping

B



! E

k



(x) : B

�1

7! PINV IT (k)[x℄: (2.11)
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ThereinPINV IT (k)[x℄ denotes the new iterate according to Algorithm 1.5, andE

k



(x) is
defined to be the set of possible iterates. In this chapter we review some properties of the set
E

1



(x) and the implications for the convergence of the associated eigensolver. Later in Chapter
5 we will present an analysis of PINVIT(2) for which a detailed description ofE2



is given.
For the sake of simplicity we abbreviateE1



(x) by E


(x) (or even shorterE


) and we write
explicitly

E



(x) := fx� B

�1

(Ax� �x) : B

�1

2 B



g; (2.12)

as well as the corresponding iterative scheme

x

0

= x� B

�1

(Ax� �x) (2.13)

of preconditioned inverse iteration as derived from Algorithm 1.5 fork = s = 1.
As a first observation, note thatE



(x) is a closed convex ball whose center is given by the
result of (scaled) inverse iteration.

Lemma 2.3. E


(x) is a ball (with respect to theA norm) centered at�A�1x and with the
radiusk(I � �A

�1

)xk

A

, i.e.

E



(x) = f�A

�1

x+ y : y 2 R

n

; kyk

A

� k(I � �A

�1

)xk

A

g:

Proof. By definition (2.12) the setE


(x) is a subset of the ball. To show the opposite inclusion
consider a point�A�1x + y in the ball. Let~ := (kyk

A

=k(I � �A

�1

)xk

A

) so that~ � .
Then a Householder reflectionH can be determined in a way that

�A

1=2

y = ~HA

1=2

(I � �A

�1

)x:

Inserting thisH in (2.10) and applying that preconditioner to (2.13) results in�A�1x+y since

y = �~A

�1=2

HA

1=2

(I � �A

�1

)x = (I � B

�1

A)(I � �A

�1

)x:

Lemma 2.3 gives rise to the idea to substitute the somewhat intricate analysis of scheme
(2.13) involving the preconditioners inB



by the much simpler problem to identify points
of poorest convergence in the ballE



(x). We use the Rayleigh quotient as the convergence
measure and treat the problem to locate its (unique) point ofa supremum inE



(x). This point
is associated with a preconditioner of poorest convergence—but as the decisive advantage
of this approach, there is no necessity to consider the explicit form of that preconditioner
responsible for the poorest convergence.
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2.2 A geometric representation

Trying to reformulate the assumptions on the set of admissible preconditioners as geomet-
ric conditions for the set of iteratesE



(x), we summarize in Lemma 2.4 some immediate
consequences of the fact thatE



(x) is a ball with respect to theA-geometry. First of all a
fundamentalA-orthogonal decomposition is shown, which implies that theorigin is not con-
tained inE



(x). This fact is a necessary prerequisite to guarantee convergence since in any
neighborhood of0 (not including the origin itself) the Rayleigh quotient takes its full range
[�

1

; �

n

℄.

Lemma 2.4. For x 2 R

n

n f0g it holds that

0 = (x; (I � �A

�1

)x)

A

; (2.14)

k�A

�1

xk

2

A

= kxk

2

A

+ k(I � �A

�1

)xk

2

A

; (2.15)

0 =2 E



(x) for all  2 [0; 1℄: (2.16)

Proof. Equations (2.14) and (2.15) follow from

(x; (I � �A

�1

)x)

A

= (x; x)

A

� �(x)(x;A

�1

x)

A

= 0:

Using the triangle inequality, (2.2) and (2.15) for nonzerox result in

kx

0

k

A

= k�A

�1

x + (I � B

�1

A)(I � �A

�1

)xk

A

� k�A

�1

xk

A

� k(I � �A

�1

)xk

A

=

�

k�A

�1

xk

A

+ k(I � �A

�1

)xk

A

�

�1

kxk

2

A

> 0:

Figure 2.1 illustrates the setE


(x) within the planespanfx; �A�1xg as well as theA-
orthogonal decomposition (2.15).

Our next aim is to simplify the representation of the scheme (2.13). Therefore we adopt
the common practice to carry out the analysis within a basis of eigenvectors ofA, which es-
sentially means thatA is assumed to be a diagonal matrix. Obviously, it cannot be assumed
that this basis diagonalizes the preconditioner, too. Here, we apply a slightly different trans-
formation, i.e. we transform PINVIT to theA-orthonormal basis of eigenvectors ofA, i.e. we
scale the Euclidean-orthonormal eigenvectors ofA by the factors1=�1=2

i

, i = 1; : : : ; n. We
call this new basis the-basisand the initial basis thex-basis.

Definition 2.5 (The -basis representation).LetX be the orthogonal matrix containing the
eigenvectors ofA in its columns so thatXT

AX = � andXT

X = I. The diagonal matrix
� = diag(�

1

; : : : ; �

n

) contains the eigenvalues ofA. We define the coefficient vector of x
with respect to the basis ofA-orthonormal eigenvectors ofA by

x = X�

�1=2

: (2.17)



44 2. Preconditioned inverse iteration

x
−1

.

Aλ

E  (x)γ

x

Figure 2.1:E


(x) sliced alongspanfx; �A�1xg w.r.t. k � k
A

-geometry.

We immediately obtain for the Rayleigh quotient of some coefficient vectord 2 R

n with
respect to the-basis the following representation

�(d) =

(d; d)

(d;�

�1

d)

; (2.18)

which is checked by writing out the Rayleigh quotient (1.3) of X�

�1=2

d. We usually abbrevi-
ate� := �().

We highlight the following properties of the-basis representation:

1. The-basis representation of the discretization matrix equalsthe identity matrix because
of

(X�

�1=2

)

T

AX�

�1=2

= I:

In the same way the identity is transformed to�

�1. As a pleasant feature,E


turns out
as a ball with respect to the Euclidean geometry.

2. While the gradient of the Rayleigh quotient�(x) = (x;Ax)=(x; x) within thex-basis,
as given by

r�(x) =

2

(x; x)

(Ax� �x)

is not directed to the center ofE


(x) asr�(x) is not collinear tox��A�1x, the gradient
vector of (2.18)

r�() =

2

(;�

�1

)

(� ��

�1

);

points to the center���1 of the ball. This property sets up an appropriate geometry
and turns out as decisive for several respects in the analysis of (2.13).
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Let us now reformulate PINVIT within the-basis based on preconditioners of the form
(2.10) as they span the full ballE



.

Lemma 2.6.Preconditioned inverse iteration for the preconditioner (2.10) takes (with respect
to theA-orthonormal basis of eigenvectors ofA) the form



0

= ��

�1

� ~(I � 2vv

T

)(I � ��

�1

); (2.19)

where and0 are the coefficient vectors within this basis ofx andx0, respectively. All admis-
sible preconditioners are spanned for0 � ~ �  andv 2 R

n , kvk = 1.

Proof. Inserting (2.17) in (2.13) and using (2.10) we obtain



0

= � �

1=2

X

T

B

�1

X�

1=2

(I � ��

�1

) = ��

�1

� ~X

T

HX(I � ��

�1

); (2.20)

so that (2.19) follows since bothH andXT

HX are Householder reflections.

For the sake of convenience we defineE


() to be the-basis representation ofE


(x), i.e.

E



() := f�

1=2

X

T

z : z 2 E



(x)g = f

0 given by (2.19)g: (2.21)

We conclude this section with the important remark that the maximal Rayleigh quotient on
E



() does not depend on the signs of the components of, because a change of the sign of
thekth component of corresponds to a reflection ofE



() by a hyperplane orthogonal to the
kth unit vector through the origin. Since the Rayleigh quotient (2.18) is a purely quadratic
function in the components of its argument, any sign dependence vanishes and the Rayleigh
quotient takes the same values on the reflected ball.

This gives us the justification to restrict the convergence analysis to non-negative coeffi-
cient vectors.

2.3 Multiple eigenvalues

The aim of this section is to provide a justification for restricting the convergence analysis of
preconditioned inverse iteration to matrices having only simple eigenvalues. In this section,
we therefore assumeA to be a real symmetricm � m matrix with n different eigenvalues
0 < �

1

< : : : < �

n

. The multiplicity of�
i

is given bym
i

so thatm =

P

n

i=1

m

i

. Then within
the-basis the diagonal matrix� reads

� = diag(�

1

; : : : ; �

1

| {z }

m(1)

; : : : ; �

n

; : : : ; �

n

| {z }

m(n)

) 2 R

m�m

:

We write the corresponding coefficient vectors as

d = (d

1;1

; : : : ; d

1;m(1)

; : : : ; d

n;1

; : : : ; d

n;m(n)

)

T

2 R

m

;
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whered
i;j

denotes thejth component corresponding to theith eigenvalue of multiplicitym(i).
Now consider the mappingP : R

m

! R

n , which defines a corresponding eigenvalue prob-
lem of a smaller dimension with the same but simple eigenvalues by condensing components
belonging to a multiple eigenvalue in a joint component.

(Pd)j

i

=

�

d

i

:= (

m(i)

X

j=1

d

2

i;j

)

1=2

: (2.22)

The Rayleigh quotient belonging to�d 2 R

n with �

� = diag(�

1

; �

2

; : : : ; �

n

) is denoted by

�

�(

�

d) =

(

�

d;

�

d)

(

�

d;

�

�

�1

�

d)

:

Preconditioned inverse iteration for the reduced problem with � := P () reads

�

0

=

�

�(�)

�

�

�1

�� ~

�

H(I �

�

�(�)

�

�

�1

)� (2.23)

for arbitrary Householder reflections�H 2 R

n�n . Obviously, (2.23) defines a ballE


(�) � R

n .
The next lemma shows that the suprema in the case of simple eigenvalues dominate those of
the multiple eigenvalue case.

Lemma 2.7. Let  2 R

m , then

sup �(E



()) � sup

�

�(E



(�)): (2.24)

Proof. First observe thatP keeps the Rayleigh quotient invariant in a sense that

�(d) =

�

�(Pd); d 2 R

m

: (2.25)

Especially,� = �() =

�

�(P) so thatP maps the center ofE


() to the center ofE


(�),
i.e.P (���1) = �

�

�

�1

�. Because ofk� ��

�1

k =





�� �

�

�

�1

�



 both balls have the same
radius.

Since for anyd; e 2 R

m (with �

d = Pd and�e = Pe) we have (by using the Cauchy-Schwarz
inequality)

ke� dk

2

=

n

X

i=1

m(i)

X

j=1

(e

i;j

� d

i;j

)

2

�

n

X

i=1

�e

2

i

+

n

X

i=1

�

d

2

i

� 2

n

X

i=1

0

�

(

m(i)

X

j=1

e

2

i;j

)

1=2

(

m(i)

X

j=1

d

2

i;j

)

1=2

1

A

=





�e�

�

d





2

= kPe� Pdk

2

;

from which we conclude thatP (E


()) is a subset ofE


(�). Therefore, it holds

sup

�

�(P (E



())) � sup

�

�(E



(�));

and the proposition follows with (2.25).
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Inequality (2.24) is sharp as shown in Section 3.3 of [96]. Weconclude that we do not lose
generality by restricting the analysis of preconditioned inverse iteration to matrices having
only simple eigenvalues.

2.4 A convergence theorem

Having reviewed the geometry underlying the analysis of preconditioned inverse iteration in
the previous sections, let us now reproduce the central convergence theorem from [95, 96],
where the reader will also find the complete convergence proof. We note that analogous proof
techniques are employed for the analysis of the fastest possible convergence in Chapter 3.

Let us summarize the main steps of the convergence proof:

1. Poorest preconditioning: For a given vector find that pointw in E



() in which the
Rayleigh quotient takes its maximum. Thenw = w[℄ is considered as the point of
poorest convergence with respect to the choice of the preconditioner (from the setB



of
admissible preconditioners). Then for the Rayleigh quotient �(w) it holds that

�(w) < �()

and the decrease�() � �(w) is considered as a convergence measure toward the next
smaller eigenvalue.

2. Level set dependence: There is another degree of freedom to be eliminated. Having
given an iteration vector with the Rayleigh quotient� 2 (�

1

; �

n

), its expansion in eigen-
functions is not unique. In other words for a fixed� the Rayleigh quotient�(w) depends
on the choice of from the level set

L(�) := f 2 R

n

: �() = �g:

Hence, the second task is to determine the set

arg max

2L(�)

�(w[℄) (2.26)

of vectors of poorest convergence with respect to the level setL(�). As shown in [96]
the set (2.26) is spanned by a unique vector aside from scaling and the signs of the
contributing eigenvectors.

3. Mini-dimensional analysis: In a final step we derive the Rayleigh quotient�(w[

�

℄) for
a vector� of poorest convergence where� is given by (2.26). As� is contained in
a 2D invariant subspace ofA (compare to a similar property of inverse iteration), we
determine�(w[�℄) by some mini-dimensional analysis. The latter value servesas a
sharp upper bound for�(0) by (2.19) for an arbitrary choice of 2 L(�) and for all
admissible preconditioners.
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Here we do not discuss convergence estimates for the residual. Those bounds can be de-
rived for instance by the Temple inequality and they show that the residual converges to 0 if the
Rayleigh quotient tends to the eigenvalue�

1

. We refer to Section 3.2 in [96] concerning con-
vergence estimates for the eigenvector approximations. The main reason for our reticence is
that the sequence of the acute angles between the eigenvector belonging to�

1

and the PINVIT
iterates is not always monotone decreasing.

In Theorem 2.8 we summarize the results of the convergence analysis of (2.13) in terms of
a sharp estimate for the stepwise decrease of the Rayleigh quotient. In other words, we give
an upper estimate for the Rayleigh quotient�

0

= �(x

0

) of the new iterate. This bound depends
not only on the Rayleigh quotient� = �(x) of the actual iterate but also on, �

i

and�
i+1

if
� 2 (�

i

; �

i+1

). As a measure for the relative decrease of�

0 toward the next smaller eigenvalue
�

i

, we consider the ratio

�

i;i+1

(�; ) :=

�

0

� �

i

�� �

i

:

In the case of poorest convergence it always holds�

0

> �

i

, which guarantees positiveness of
�

i;i+1

(�; ). The following theorem will show that this ratio is smaller than 1. To make the
theorem easily accessible to the reader, it is formulated with respect to the initial basis (the
x-basis) and not with respect to the more technical-basis.

Theorem 2.8.Letx(0) 6= 0 be an initial vector with the Rayleigh quotient�(0) := �(x

(0)

) and
denote the sequence of iterates of preconditioned inverse iteration (2.13) by

(x

(k)

; �

(k)

); k = 0; 1; 2; : : : ;

where�(k) = �(x

(k)

). The preconditioner is assumed to satisfy (2.2) for some 2 [0; 1).
Then the sequence of Rayleigh quotients�

(k) decreases monotonically and(x(k); �(k)) con-
verges to an eigenpair ofA. Moreover, let(x; �) = (x

(k)

; �(x

(k)

)) be the iterates of thekth
step,k � 0, and denote the new iterates by(x0; �0) = (x

(k+1)

; �(x

(k+1)

)). Then it holds that:

1. For� = �

1

or � = �

n

the iteration is stationary in an eigenvector ofA.
If � = �

i

, with2 � i � n�1, then�0 takes its maximal value�0 = �

i

if (2.13) is applied
to the eigenvectorx

i

belonging to the eigenvalue�
i

.

2. If �
i

< � < �

i+1

, then�0 takes its maximum with respect tox 2 L(�) in the vector
x = x

i;i+1

with

x

i;i+1

= !

1

x

i

+ !

2

x

i+1

;

for suitable real constants!
1

and!
2

. In other words,x
i;i+1

is contained in the invariant
subspace spanned by the eigenvectorsx

i

andx
i+1

. The supremum concerning poorest
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preconditioningB�1 2 B


leads to the Rayleigh quotient�0 = �

i;i+1

(�; ) where

�

i;j

(�; ) = ��

i

�

j

(�

i

+ �

j

� �)

2

=

�



2

(�

j

� �)(�� �

i

)(��

j

+ ��

i

� �

2

i

� �

2

j

)

�2

p

�

i

�

j

(�� �

i

)(�

j

� �) (2.27)
q

�

i

�

j

+ (1� 

2

)(�� �

i

)(�

j

� �)

��(�

i

+ �

j

� �)(��

j

+ ��

i

� �

2

i

� �

i

�

j

� �

2

j

)

�

:

For the relative decrease of�0 = �

i;i+1

(�; ) toward the nearest eigenvalue�
i

smaller
than� it holds

�

i;i+1

(�; ) =

�

i;i+1

(�; )� �

i

�� �

i

< 1: (2.28)

The proof of Theorem 2.8 is given in [95, 96].

The reader should not be confused by the complex form of the bound (2.27) and should
understand its complexity as the price one has to pay for having an estimate that is sharp in
�, �

i

, �
i+1

and. The major drawback of (2.27) is that the dependence on its arguments is
not “visibly” clear. A remedy overcoming this disadvantageis given in Chapter 4 where a
simple and short convergence estimate is derived by eliminating the dependence on�, which
essentially means that we sacrifice the sharpness in�.

Theorem 2.8 guarantees that the Rayleigh quotients of the iterates form amonotone de-
creasing sequence of numbers converging to an eigenvalue: To elucidate the convergence
behavior in a more detailed way, consider the sequence of iterates in the form(x(k); �(k)), for
k = 0; 1; 2; : : :. If one starts with an initial eigenvalue approximation larger than (the possibly
interior eigenvalue)�

i

, it cannot be said in principle when the Rayleigh quotients�

(k) move
from one interval[�

i

; �

i+1

) to the next interval of smaller eigenvalues and finally to the“catch-
ment basin”[�

1

; �

2

) of the smallest eigenvalue�
1

. For the moment we assume the Rayleigh
quotients to have reached the interval[�

1

; �

2

). Then the “one-step” estimates�
i;i+1

for i = 1

can be used to define aconvergence rateestimate�
1;2

(�; ) for PINVIT

�

1;2

(�; ) := sup

�

1

<

~

���

�

1;2

(

~

�; ); � 2 (�

1

; �

2

℄: (2.29)

(One should note that�
1;2

(�; ) only slightly differs from�

1;2

(�; ). In the example discussed
below, see Figure 2.2, the curve�

1;2

(�; 0:9) in the interval[2; 5℄ takes its minimum in� � 2:44

instead of� = 2.)
Now, �

1;2

(�; ) is an upper bound for the relative decrease of the Rayleigh quotients in
the sense that

�

(k+1)

� �

1

�

(k)

� �

1

� �

1;2

(�; ); for k = 1; 2; : : : :
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Figure 2.2:Convergence estimates�
i;i+1

(�; ) for the 10 smallest eigenvalues�(k;l)
h

given by
Equation (2.30).

In other words, the Rayleigh quotients�(k) convergelinearly to �
1

with the convergence rate
�

1;2

.

We lay special emphasis on the fact that�

1;2

(�; ) for a mesh eigenproblem can be
bounded away from 1 independently of the mesh size, see the discussion on grid-independent
convergence at the end of this chapter.

Let us now explain and illustrate the results by discussing the five-point finite difference
discretization of the eigenproblem for the Laplacian on thesquare[0; �℄2 with homogeneous
Dirichlet boundary conditions. The eigenvalues of the continuous problem�(k;l) and of the
finite difference discretization�(k;l)

h

, for the mesh sizeh, h = �=N for N 2 N , are given by

�

(k;l)

= k

2

+l

2

; �

(k;l)

h

=

4

h

2

�

sin

2

(

kh

2

) + sin

2

(

lh

2

)

�

; k; l = 1; 2; : : : ; N�1: (2.30)

The 10 smallest eigenvalues�(k;l) including multiplicity read2; 5; 5; 8; 10; 10; 13; 13; 17; 17.
For h = �=50 these eigenvalues coincide with the�(k;l)

h

within the 1 percent range. Figure
2.2 shows the convergence estimates�

i;i+1

(�; ) plotted against� 2 [2; 17℄ for eleven val-
ues of,  = 0; 0:1; : : : ; 1. The eigenvalues�

i

:= �

(k;l)

h

are marked by bold vertical lines
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on the abscissa. Note that by Section 2.3 there is no dependence on the multiplicity of the
eigenvalues.

The bold curves represent the case = 0, i.e.B = A, for which PINVIT is identical with
the inverse iteration procedure (INVIT). We explicitly derive the estimate of poorest INVIT
convergence, by inserting = 0 andj = i+ 1 in (2.27) and obtain

�

i;i+1

(�; 0) =

�

�

�1

i

+ �

�1

i+1

� (�

i

+ �

i+1

� �)

�1

�

�1

; (2.31)

and

�

i;i+1

(�; 0) =

�

2

i

�

2

i

+ (�

i+1

� �)(�

i

+ �

i+1

)

: (2.32)

In each interval[�
i

; �

i+1

) inverse iteration (as shown in Theorem 1.8) attains its poorest con-
vergence in those vectors which are spanned by the eigenvectors corresponding to�

i

and�
i+1

.
For � = �

i+1

we have�
i;i+1

(�

i+1

; ) = 1, which expresses the fact that INVIT and
PINVIT are stationary in the eigenvectors ofA. The curves in Figure 2.2 for > 0 describe
the case of poorest convergence of PINVIT. For = 1 poorest convergence means stationarity
of the eigensolver, i.e.

�

i;i+1

(�; 1) = 1 for � 2 [�

i

; �

i+1

℄ and i = 1; : : : ; n� 1:

For decreasing PINVIT behaves more and more like inverse iteration. As a result of Theorem
2.8 poorest convergence is attained inx

i;i+1

, which underlines the close relation of inverse
iteration and preconditioned inverse iteration.

In principle, it cannot be guaranteed that the eigensolver converges to thesmallesteigen-
value�

1

and to a corresponding eigenvector, since the whole iteration may take place in the
orthogonal complement of the invariant subspace to�

1

. But as the latter set forms a null set,
and as an effect of rounding errors, such an early breakdown does not occur in practice so that
the preconditioned eigensolver converges from scratch. Moreover, note that even inverse iter-
ation is most unstable in the directions of the invariant subspace to�

1

as all the eigenvectors
x

2

; : : : ; x

n�1

corresponding to the eigenvalues�
2

; : : : ; �

n

are saddle points of the Rayleigh
quotient.

It is an important result that Theorem 2.8 predictsgrid independent convergence(i.e. there
is no dependence on the mesh sizeh or on the number of the unknowns) for any eigenvalue
problem, which stems from the discretization of an ellipticpartial differential operator inas-
much is bounded away from 1 independently of the mesh size. Then mesh independence of
(2.28) follows from the fact that (2.27) is only a function of�, �

i

, �
i+1

and. Explicitly, it does
not depend on the largest eigenvalue�

n

. As the dependence of the function�
i;j

(�; ) on its
arguments cannot easily be grasped, we refer to Chapter 4 where a simple upper convergence
estimate is provided.

As it has already been mentioned, we assume that there is no implicit dependence on�
n

or
the mesh size via: For the best multigrid or multilevel preconditioners, (2.2) is satisfied for
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 bounded away from 1 independently of the mesh size. Furthermore, in case of anadaptive
multigrid eigenvalue computation with a good coarse grid approximation, one expects that
all the eigenvalue approximations, which are generated in the course of the iteration on all
levels of refinement, are located in the interval[�

1

; �

2

) if the discretization error is small in
comparison to�

2

� �

1

. In this case the bound� by (2.29) gives a reliable convergence rate
estimate.

Hence, depending on the quality of the preconditioner,eigenvector/eigenvalue computa-
tion can be done with a grid independent rate while the convergence rates are of comparable
magnitude with that of multigrid methods for boundary valueproblems. Therefore our pre-
conditioned eigensolvers can be viewed as the counterpartsof multigrid algorithms for the
solution of boundary value problems, see [75, 97] and cf. Table 1.1.
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3. ANALYSIS OF FASTEST CONVERGENCE

In Chapter 2 we have presentedsharpconvergence estimates on thepoorestconvergence of
preconditioned inverse iteration. The convergence theorydiscussed so far appears to have
reached some final state as sharpness of these bounds means that they can be attained under
the assumptions made within our setup.

Nevertheless, since analytic error estimates on eigenvalue approximations often tend to
be pessimistic, the aim of this chapter is to explore the range betweenfastestand poorest
convergence. To this end we will derive sharp estimates on the best convergence. These
estimates from below reveal a wide corridor between fastestand poorest convergence.

Moreover, we will show that the preconditioned eigensolvermay converge in asingle step
to an eigenvector belonging to the smallest eigenvalue�

1

. This may happen under relatively
weak conditions, i.e. we only assume somelowerspectral bound on the quality of the precon-
ditioner. We emphasize that such a behavior is fundamentally different from that of inverse
iteration! It is well known that inverse iteration (aside from the trivial case that the iteration
vector is still an eigenvector) necessarily converges in infinitely many steps. The mentioned
properties hold analytically—they have nothing to do with anumerical implementation using
finite precision arithmetic. For an illustration of these relations, which however anticipates the
analytic results to be derived later within this chapter, the reader may compare the convergence
curves for the model problem drawn in Figure 2.2 to those of Figure 3.5 and will observe that
extremely fast convergence is possible. Analytic results on this fastest convergence are given
in Lemma 3.2 and in Corollary 4.8.

There is a second reason why we are interested in estimates onthe fastest convergence:
First observe that for the “expensive” choiceB�1 = A

�1, which we like to refer asexact
preconditioning, the convergence estimate of Theorem 2.8 turns into that of inverse iteration
(2.32). In other words the convergence rate of inverse iteration appears as the limit rate for
exact preconditioning. Moreover, estimate (2.28) for a larger spectral radius of the error prop-
agation matrix, predicts even a poorer convergence estimate compared to that of inverse itera-
tion. Therefore, it is sometimes believed that preconditioned inverse iteration cannot converge
faster than inverse iteration. As pointed out above, this isnot the case, i.e. the precondi-
tioned eigensolver mayconverge significantly fasterthan inverse iteration. Here we do not
treat the question of how to construct such preconditionersresponsible for fastest convergence
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in practical applications as we restrict the assumption on the preconditioner on the condition
(2.2).

The results of the present chapter should also make clear that any high-accuracy solution
of the linear system associated with inverse iteration doesnot pay out. In other words, it is not
worthwhile to consider high-accuracy preconditioners forthe eigensolvers under considera-
tion. The computational effort necessary for accurate preconditioning should rather be spent
to the next step of the eigensolver using a “moderate-quality” preconditioner.

Let us now start with rather technical items. In the following we mainly apply that
techniques, which have already been used to prove Theorem 2.8. For given 2 [0; 1℄ and
� 2 (�

1

; �

n

) there are two factors responsible for the speed of convergence:

1. The choice of the preconditionerB�1 2 B


by (2.3). The most advantageous choice in
B



consists in a preconditioner which maps the actual iteratex into the (in most cases
unique) point of an infimum of the Rayleigh quotient onE



. The necessary analysis is
given in Section 3.1.

2. The freedom to choosex from the level set

L(�) = fx 2 R

n

: �(x) = �g

of vectors having the fixed Rayleigh quotient�. This analysis is presented in Section
3.2.

The choices inB


andL(�), optimal in such a way that the Rayleigh quotient of the new
PINVIT iterate takes its smallest possible value, defines the vector of fastest convergence

x

�

2 arg min

x2L(�)

min

B

�1

2B



�(x�B

�1

(Ax� �x));

for which finally, by means of a mini-dimensional analysis, convergence estimates are derived.

Not surprisingly in the light of the discussion above, Theorem 3.15 reveals that PINVIT
may converge much more rapidly than expressed by Theorem 2.8. In particular and as men-
tioned above, one-step convergence to an eigenvector is possible, i.e. eigenvectors are “often”
contained in the setE



as shown in Lemma 3.2.

3.1 Best preconditioning

For the remaining part of this chapter we employ the-basis as introduced in Definition 2.5
and which has already been proved to set up the proper geometry for the convergence analysis
in [95, 96]. For simplicity, we also assume 2 R

n to satisfy the following Assumption 3.1.
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Assumption 3.1.
1. kk = 1,
2.  is not equal to any of the unit vectorse

i

, i = 1; : : : ; n,
3.  � 0 componentwise.

Assumption 3.1 does not mean any restriction of generality.Restricting PINVIT to the
unit ball kk = 1 is justified since (2.19) is homogeneous with respect to a scaling of the
iterate. Excluding the unit vectors, which are the-basis representations of the eigenvectors
of A, avoids stationarity. Finally, for the sake of conveniencewe restrict the analysis to com-
ponentwise nonnegative 2 R

n . Any change of a sign of some component

k

leads to a
reflection ofE



() by a hyperplane through the origin orthogonal to thekth unit vector. Such
a reflection has no effect on the Rayleigh quotient onE



() since�(�) is purely quadratic in
the components of its argument.

3.1.1 Extremum points inE


()

Lemma 3.2 shows that misconvergence of PINVIT to the largesteigenpair(e
n

; �

n

) will never
happen and provides a condition under which immediate termination within the first eigen-
vectore

1

may take place. But let us first introduce the smallestcircular coneC


() enclosing
E



()

C



() := f�d : d 2 E



(); � > 0g: (3.1)

Lemma 3.2. Let  2 R

n obey Assumption 3.1. Thene
n

62 C



(). Furthermore,e
1

2 C



() iff



1

�

�

1

�

�

k��

�1

k

2

� 

2

k(I � ��

�1

)k

2

�

1=2

: (3.2)

Proof. The acute angle� enclosed betweene
n

and the axis���1 of C


() is given by

os� =

(e

n

; ��

�1

)

ke

n

k k��

�1

k

=

��

�1

n



n

k��

�1

k

:

Contrastingly, for the opening angle' of the largest possible coneC
1

() � C



() it holds

os' =

(; ��

�1

)

kk k��

�1

k

=

1

k��

�1

k

:

Sincekk = 1 and thus���1
n



n

< 1 , we infer that' < � which impliese
n

=2 C



().
For the acute angle� betweene

1

and���1 it holds

os� =

��

�1

1



1

k��

�1

k

;
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and for the opening angle' of the circular coneC


()

os

2

' =

k��

�1

k

2

� 

2

k(I � ��

�1

)k

2

k��

�1

k

2

:

The condition� � ' reads���1
1



1

� (k��

�1

k

2

� 

2

k(I � ��

�1

)k

2

)

1=2

:

Inequality (3.2) is not an unrealistic condition and becomes even weaker for increasing.
The limit  ! 1 defines the largest coneC

1

() containinge
1

, iff



1

�

�

1

�

; (3.3)

which follows from (3.2) together with Lemma 2.4. Therefore, the condition (3.3) will be
fulfilled sooner or later whenever converges toe

1

.

Our next aim is to locate points of extrema of the Rayleigh quotient onE


() by analyzing
its local behavior. The maximum of�(E



()) corresponds to poorest convergence (concerning
the choice of the preconditioner inB



), while the minimum is associated with the best possible
convergence. Since the Rayleigh quotient is invariant withrespect to nonzero scaling of its
argument, we always subsume under uniqueness of points of extrema the uniqueness despite
of scaling.

In Lemma 3.3 we recapitulate the gradient and Hessian of the Rayleigh quotient. The max-
imum and the minimum of�(�) are taken ine

n

ande
1

, respectively. All the other eigenvectors
e

i

, 1 < i < n, are saddle points which can easily be seen by inspecting (3.4) and (3.5).

Lemma 3.3. For nonzero 2 R

n the gradient of the Rayleigh quotient (2.18) reads

r�() =

2

(; ��

�1

)

(I � ��

�1

): (3.4)

It holdsr�() = 0, iff  = �e

i

for 1 � i � n and� 6= 0. The HessianH() of�() is given by

H() =

2

(;�

�1

)

2

h

(I � ��

�1

)(;�

�1

) (3.5)

�2(�

�1

)[(I � ��

�1

)℄

T

� 2[(I � ��

�1

)℄(�

�1

)

T

i

:

Proof. By direct computation from (2.18). (Because of the nonlinearity of (2.18) the Equation
(3.4) cannot be gained by applying the linear transformation (2.17) to thex-basis represen-
tation of the gradient as given by (1.4). The same does hold concerning the Hessian of the
Rayleigh quotient.)

By using Lemma 3.3 we conclude that the points of absolute extrema of�(�) are located
on the boundary�E



() of E


(). The uninteresting casee
1

2 C



() can be excluded since
one-step-convergence is sufficiently described in Lemma 3.2.
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Lemma 3.4. If e
1

is not contained in the interior�C


() ofC


() (cf. (3.2)), then

arg ext�(E



()) � �E



();

whereext denotes the set of absolute extrema.

Proof. Let w be the point of a minimum or maximum of the Rayleigh quotient on E



()

and assumew 2

�

E



(). Thenr�(w) = 0 andw = �e

i

by Lemma 3.3 for some scalar�.
Lemma 3.2 guaranteesi 6= n, while i 6= 1 holds by the assumption. In the remaining cases
2 � i � n� 1 the Hessian (3.5) in�e

i

is diagonal,

H(�e

i

) =

2�

i

�

2

(I � �

i

�

�1

):

Since(1 � �

i

=�

n

) > 0 and(1 � �

i

=�

1

) < 0 the Hessian has (at least) one positive and one
negative eigenvalue, so thatw is not a point of an absolute extremum.

In analogy to Theorem 4.3 in [96], the fact that all points of infima are located on the
surface ofE



() gives rise to some orthogonal decomposition:

Theorem 3.5. Let  satisfy Assumption 3.1 and 2 [0; 1). If e
1

=2 C



(), then it holds for
w 2 arg inf �(E



()) that

(w;w � ��

�1

) = 0; (3.6a)

k��

�1

k

2

= kwk

2

+





w � ��

�1







2

; (3.6b)




w � ��

�1







= k(I � ��

�1

)k; (3.6c)

kwk > kk : (3.6d)

Proof. If (w;w � ��

�1

) 6= 0, then�w 2 �

E



() with � = (w; ��

�1

)=(w;w) since

kw � ��

�1

k

2

� k�w � ��

�1

k

2

=

1

kwk

2

�

kwk

2

� (w; ��

�1

)

�

2

> 0:

Additionally, we have�(�w) = �(w) in contradiction to Lemma 3.4. Equation (3.6b) is a
direct consequence of (3.6a). Equation (3.6c) only expressesw 2 �E



(). Finally,

kwk

2

= k��

�1

k

2

� 

2

k(I � ��

�1

)k

2

> k��

�1

k

2

� k(I � ��

�1

)k

2

= kk

2

:
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3.1.2 A necessary condition for infimum points

In this section we derive a necessary condition characterizing infimum points of the Rayleigh
quotient onE



(). This is done by two alternative approaches. First, Lemma 3.6 exploits
some orthogonality (3.8) as suggested by Knyazev [67]. Alternatively, in Lemma 3.7 we
apply the method of Lagrange multipliers to the Rayleigh quotient and take (3.6a)–(3.6c) as
the (geometric) constraints. Obviously, Lemmata 3.6 and 3.7 hold for any constrained local
extremum of�(�) on�E



().

Lemma 3.6. Let  obey Assumption 3.1 and 2 (0; 1) so that the interior ofE


() is
nonempty. Then any point of an infimumw 2 arg inf �(E



()) fulfills

(�(w)�

�1

+ (� � 1)I)w = ���

�1

; (3.7)

for some real number�.

Proof. If the gradient

r�(w) =

2

(w;�

�1

w)

(I � �(w)�

�1

)w

in w 2 arg inf �(E



()) vanishes, then (3.7) holds trivially for� = 0. Now assumer�(w) to
be nonzero which implies thatw 6= e

i

for 1 � i � n because of Lemma 3.3 andw 2 �E


().
A necessary condition for an extremum pointw of �(�) on�E



() reads

0 = lim

"!0

d

d"

�(w + "z) = (r�(w); z); (3.8)

for all z tangent toE


() in w. Hence,r�(w) is orthogonal to the tangent plane ofE


() in
w. Equivalently, there is a nonzero� 2 R so that

w � �(w)�

�1

w = �(w � ��

�1

);

which implies (3.7).

The second approach to derive a necessary condition for an infimum point inw makes use
of the Lagrange multiplier method; cf. Lemma 4.4 in [95].

Lemma 3.7. Under the assumptions of Lemma 3.6 there are constants�; � 2 R so that

2(�

�1

+ (�+ �)I)w = ���

�1

; (3.9)

Proof. By (3.6b) and (3.6c) it holds

kwk

2

= k��

�1

k

2

� 

2

k(I � ��

�1

)k

2

: (3.10)
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Thereforekwk has a fixed value for given and. Hence, extrema of(w;��1w) are taken
in the same arguments as those of the Rayleigh quotient�(w). The Lagrange functionL =

L(w; �; �) of (w;��1w) with respect to the constraints (3.6a) and (3.10) reads

L = (w;�

�1

w) + �

�

kwk

2

+ 

2

k(I � ��

�1

)k

2

� k��

�1

k

2

�

+ �(w;w � ��

�1

);

where� and� are Lagrange multipliers. A vanishing gradient ofL in w is the necessary
condition for a constrained local extremum and leads to (3.9).

The conditions (3.7) and (3.9) are essentially the same. First we have to exclude� = 0 or
� = 0, respectively, since otherwisew could be a multiple of a unit vectore

i

. Here we do not
present the somewhat technical proof that in unit vectorse

i

, i � 2, the Rayleigh quotient never
takes an infimum onE



(). We refer to Lemma A.1 in [96] whose arguments can be extended
to hold for infimum points. This gives us the justification to assume� 6= 0 and� 6= 0 from
now on.

The further analysis is based on condition (3.9). Of course,we are interested in finding an
explicit representation ofw depending on and the Lagrange multipliers. But to gain this, the
diagonal matrixD := �

�1

+ (�+ �)I in Equation (3.9) has to be inverted. While for the case
of suprema, as shown by Theorem 4.8 in [95],D is invertible, this is not always the case if
w is an infimum point. In Section 3.1.5 a numerical example is presented. Problems occur if
the first component of equals 0. Lemma 3.8 secures the invertibility ofD

ii

for the remaining
componentsi > 1.

Lemma 3.8.Under the assumption of Lemma 3.6 letw 2 arg inf �(E



()). Then positiveness
of 

k

impliesw
k

> 0 for k = 1; : : : ; n. Moreover,

w

k

=

��

2 + 2�

k

(�+ �)



k

> 0: (3.11)

Finally, 
k

= 0 entailsw
k

= 0 but only fork = 2; : : : ; n.

Proof. If 
k

6= 0, then��1
k

+ �+ � andw
k

are nonzero by (3.9) which also results in (3.11).

Now assumew
k

< 0 and define�w to be equal tow but change the sign of thekth compo-
nent. Then�w is closer to the center���1 since





w � ��

�1







2

�





�w � ��

�1







2

= �4w

k

��

�1

k



k

> 0:

Therefore,�w is located in the interior ofE


(). But �(w) = �( �w) contradicts Lemma 3.4 so
thatw

k

must be positive.

Next assume
k

= 

k

0

= 0 together withw
k

= w

k

0

6= 0. Then (3.9) implies

(�

�1

k

+ �+ �)w

k

= 0 = (�

�1

k

0

+ �+ �)w

k

0

;
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so that�
k

= �

k

0 or k = k

0 because all eigenvalues are simple. We conclude that

k

= 0 and
w

k

6= 0 may hold only for a single component.
Now denote byl the smallest index with

l

> 0 and letl0 be the largest index with
l

0

> 0.
We assume

k

= 0 andw
k

6= 0 for l < k < l

0. From (3.9) we deduce�+ � = �1=�

k

and thus
obtain forw

l

andw
l

0

w

l

=

��

k

�

�

k

� �

l



l

2

; w

l

0

=

��

k

�

�

k

� �

l

0



l

0

2

:

Since
l

, 
l

0 , w
l

andw
l

0 are positive and�
l

< �

k

< �

l

0 one obtains

� =

w

l



l

2(�

k

� �

l

)

�

k

�

> 0; � =

w

l

0



l

0

2(�

k

� �

l

0

)

�

k

�

< 0;

which contradicts� 6= 0. Hencew
k

= 0.
Next consider

m

= 0 andw
m

6= 0 for somem with l0 < m � n. Let �w be equal tow
except for themth component which is set to 0. By construction it holds�w 2

�

E



(). Since


m

= 

m+1

= : : : = 

n

= 0 and thus�(���1) < �

m

, we conclude�(w) = inf �(E



()) <

�

m

. We can rewrite the latter inequality as

[(w;w)� w

2

m

℄(w;�

�1

w) < [(w;�

�1

w)� w

2

m

=�

m

℄(w;w);

which is equivalent to�( �w) < �(w) and which contradicts the assumption ofw being an
infimum point.

Finally, let 
m

= 0 andw
m

6= 0 for somem with 1 < m < l

0. Define �w to be equal tow
but interchange the components with indexes1 andm. Since

1

= 

m

= 0 one has




��

�1

� w





=





��

�1

� �w





;

and thus�w 2 E



(). But then due to�
1

< �

m

we have�( �w) < �(w), which contradicts
w 2 arg inf �(E



()).

3.1.3 Parametrization of infimum points

Let us now assume
1

6= 0. This assumption, on the one hand, allows us to show that for any
 the infimum point onE



() is unique. On the other hand, we are able to parametrize the
continuous curve of infima for 2 [0; 1) in some real parameter�.

Theorem 3.9.On the assumptions of Lemma 3.6 and assuming that

1

> 0 any infimum point
w 2 arg inf �(E



()) can be written as

w = �(�I + �)

�1

 (3.12)

for unique real numbers� 2 (��

1

; 0℄ and

� = �(�) =

(��

�1

; (�I + �)

�1

)

((�I + �)

�1

; (�I + �)

�1

)

> 0:
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Moreover, the function

� : (��

1

; 0℄! (�

1

; �(�

�1

)℄ : � 7! �(w) = �((�I + �)

�1

) (3.13)

is strictly monotone increasing in�. Finally, the gradient vector inw andw � ��

�1

, the
normal vector onE



() in w, are collinear. Thus

r�(w) 2 spanfw; ��

�1

g: (3.14)

Proof. Summarizing the results of Lemmata 3.7 and 3.8, anyw 2 arg inf �(E



()) can be
written in the form (3.12) for�; � 2 R. The coefficients� and� are functions of 2 [0; 1).

First we show that� > 0 and� > ��
1

: Forw = �(�I+�)

�1

we have�=(�+�
i

) > 0 for
any nonzero component

i

by Lemma 3.8. If� < 0, then� < ��
l

(wherel is the largest index
so that

l

> 0) and the sequence�
�+�

i

, only for indexesi with 

i

> 0, is strictly monotone
increasing. Hence,�(w) > �(), which contradicts PINVIT convergence, see Theorem 2.8.
The explicit form of� > 0 can be gained from (3.6a).

In order to show that� is strictly monotone increasing, note that for� > ��
1

the diagonal
matrix (�I + �) is invertible. Let��

1

< �

1

< �

2

be given and definew(1)

:= (�

1

I + �)

�1



andw(2)

:= (�

2

I + �)

�1

. Then fori = 1; : : : ; n

w

(1)

i

=

�

2

+ �

i

�

1

+ �

i

w

(2)

i

:

Therein the positive coefficients(�
2

+ �

1

)=(�

1

+ �

1

); : : : ; (�

2

+ �

n

)=(�

1

+ �

n

) are strictly
monotone decreasing. Applying Lemma A.1 in [95] shows that� is strictly monotone increas-
ing. Furthermore, it holds

lim

�!��

1

�((�I + �)

�1

) = �

1

:

Uniqueness of� follows, since in the remaining case� > 0 we would have�((�I+�)

�1

) >

�(�

�1

), which is impossible for(�I + �)

�1

 as an infimum point.
Collinearity ofr�(w) andw� ���1 is only a reformulation of (3.8) which immediately

results in (3.14).

3.1.4 Dependence of the shift parameter� on

Looking back one can say that the important and somewhat surprising result of Theorem 3.9
is a representation of points ofinfima of the Rayleigh quotient onE



() within some real
parameters� and�. Its counterpart concerning the representation of points of supremahas
been given in [96] and leads to a formula like (3.12), too. Since the Rayleigh quotient is
invariant with respect to the choice of�, we conclude thatextrema onE



() can be represented
by using only the single real control parameter�.

Consequently, the next challenging problem is to derive an explicit formula describing the
dependence of� on , which would then allow a convenient and useful representation of the
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extremal Rayleigh quotients onE


() only depending on and the vector. Without doubt,
such an approach could simplify parts of the PINVIT convergence theory considerably! First
of all, it would allow us to analyze the dependence of the extrema of the Rayleigh quotient
�(w[℄) with respect to all vectors having a fixed Rayleigh quotient, which is a central step
in order to find an estimate describing the poorest PINVIT convergence.

Unfortunately, the problem of finding� in (3.12) as an explicit function of is not easy to
tackle. We have not succeeded in deriving�() in theRn , n > 2, as the determination of�()
in (3.16) requires the solution of a polynomial with degree2n � 2 in �. But even the result
in theR2 is of some importance since it provides the basis for deriving simplified PINVIT
convergence estimates in Section 4.2.2. Deriving a generalformula for�() remains to be an
open problem.

Let us now determine� and� in R

2 : Exploiting the geometry described in Theorem 3.5,
we can derive the scaling parameter� in (3.12) by minimizing the distance ofw[�℄ from
��

�1

 with respect to a variation of�. Then we obtain

w =

( ~w; ��

�1

)

( ~w; ~w)

~w (3.15)

for ~w = (�I + �)

�1

. By using (3.6b) and (3.6c) we obtain

( ~w; ��

�1

)

2

= k ~wk

2

�





��

�1







2

� 

2





(I � ��

�1

)





2

�

(3.16)

from which the function(�) can easily be determined. But we are interested in the inverse
function�() which, unfortunately, is a polynomial of the degree2n� 2 in �.

Let us solve this polynomial forn = 2. Then 2 R

2 andkk = 1 together with�
1

<

�() = � < �

2

leads to



2

1

=

�

1

(�

2

� �)

�(�

2

� �

1

)

and 

2

2

=

�

2

(�� �

1

)

�(�

2

� �

1

)

: (3.17)

Hence,

k��

�1

k

2

� 

2

k(I � ��

�1

)k

2

=

(�

1

+ �

2

� �)�� 

2

(�� �

1

)(�

2

� �)

�

1

�

2

:

Finally, one derives from (3.16)

�

�

=



p

�

1

�

2

�(1� 

2

)

�



p

�

1

�

2

�

p

(1� 

2

)(�

2

� �)(�� �

1

) + �

1

�

2

�

; (3.18)

where the negative sign (�� < 0) defines the infimum point of�(�) onE


(). Beyond that,
we remark that the positive sign (�+

> 0) corresponds to the supremum of the Rayleigh
quotient onE



(). Both quantities are next used in Section 4.2.2 for derivingconcise PINVIT
estimates.
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e
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e
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Figure 3.1:CurveS of infimum points onE


(),  2 [0; 1℄, projected on the unit sphere. The
bold circleC

1

marks the intersection ofC
1

() with the unit sphere.

3.1.5 Bifurcation of the infima curve

In order to parametrize the curve of infimum points, we have assumed
1

6= 0 in Section 3.1.3.
This assumption is fulfilled whenever�() < �

2

, as assumed in the classical convergence
analysis of preconditioned gradient methods [31, 36].

But if 
1

= 0, then Equation (3.13) is not capable of presenting all infimum points, since
thenmin �(�) = �

2

, but at the same time it may holdmin�(E



()) < �

2

. A continuity
argument can help to understand what happens for

1

! 0. One finds that as long as

�((�� �

1

I)

+

) � inf �(E



());

where+ denotes the pseudoinverse, the form of the infimum points is determined by Theorem
3.9. Beyond the bound�((���

1

I)

+

) the infimum points have the form (aside from scaling)

�#e

1

+ (�� �

1

I)

+

 (3.19)

for suitable# � 0.

A numerical example for the smallest nontrivial dimension is given in Figure 3.1 for 3
eigenvalues of the test problem (2.30), namely� = diag(2; 5; 13). The unit sphere is projected
along thee

2

axis, and isocurves of the Rayleigh quotient are drawn for� = �

1

+ (�

3

� �

1

)

i

30

with i = 1; : : : ; 29.
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e
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e
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Figure 3.2:CurveS of absolute extrema onE


(), 2 [0; 1℄, projected on the unit sphere.

For  = (0; 1=

p

2; 1=

p

2)

T the intersection ofC
1

() with the unit sphere is the bold circle
C

1

. The curveS of infimum points for 2 [0; 1℄ (bold T-shaped curve) starts at the center of
the circle ( = 0) and bifurcates at � 0:248 in w = (�� �

1

I)

+

. The remaining part of the
curves is of the form (3.19).

Let us also illustrate in Figure 3.2 the curveS of all absolute extrema for 2 [0; 1℄. This
is done for the same� but  = (3; 5; 5)

T

=

p

59. Now,� is contained in the interval(��
1

;1)

and the continuous curve

S(�) =

(�I + �)

�1



k(�I + �)

�1

k

starts at the north pole (� ! ��

1

), runs through the axis of the coneC


() for � = 0 and
ends in the initial vector for �!1. Therein, all� < 0 correspond to infimum points while
� > 0 gives the representation of supremum points. For this example the condition (3.3) is
fulfilled since0:391 � 

1

> �

1

=� � 0:387. Hence, the eigenvectore
1

is contained inC
1

(),
but close to its boundary.

3.2 Extremal quantities onL(�)

The aim of this section is to describe how the mapping

! w 2 arg inf �(E



())
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depends on the choice of from the level set

L(�) = f 2 R

n

: �() = �; kk = 1g: (3.20)

Throughout this section we make use of the non-restrictive Assumption 3.1 and assume each
eigenvalue to have the multiplicity 1, cf. Section 2.3. Here, we generalize some results gained
in Section 2 of [96] from suprema to the case of global extrema.

3.2.1 Extrema ofkr�()k

Theorem 3.10 shows that extrema ofkr�()k are taken in 2D (1D) invariant subspaces.

Theorem 3.10.Let � = �() 2 (�

1

; �

n

). Then for the Euclidean norm of the gradient (3.4)
onL(�) by (3.20) it holds:

1. Minima ofkr�()k are taken either in = e

i

(this uninteresting case is excluded by
Assumption 3.1 since then� = �

i

andr�(e
i

) = 0) or for �
i

< � < �

i+1

in



i;i+1

:= (0; : : : ; 0; 

i

; 

i+1

; 0; : : : ; 0)

T

2 L(�); (3.21)

having exactly the two non-zero components

i

and
i+1

.

2. Maxima ofkr�()k are all taken in
1;n

= (

1

; 0; : : : ; 0; 

n

).

Proof. The method of Lagrange multipliers provides a necessary condition for relative ex-
trema ofkr�()k with respect to the constraintskk = 1 and�() = �. Inserting the con-
straints and squaring the objective functionalkr�()k leads to the Lagrange function

L() =





(I � ��

�1

)





2

+ �(kk

2

� 1) + �((;�

�1

)� �

�1

): (3.22)

where� and� denote Lagrange multipliers. Hence,rL = 0 reads

(I � ��

�1

)

2

+ �+ ��

�1

 = 0: (3.23)

If  is not collinear to any of the unit vectors, then there are at least two nonzero components


k

and
l

, k 6= l, and (3.23) results in a system of linear equations for� and�
�

1 �

�1

k

1 �

�1

l

��

�

�

�

=

�

�(1� ��

�1

k

)

2

�(1� ��

�1

l

)

2

�

;

whose determinant does not vanish. Its unique solution reads

� =

�

2

�

k

�

l

� 1 and � =

�(2�

k

�

l

� �(�

k

+ �

l

))

�

k

�

l

:
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Inserting� and� in (3.23) we obtain forj = k; l that�2(�
j

� �

k

)(�

j

� �

l

)(�

2

j

�

k

�

l

)

�1



j

= 0.
Hence,

j

= 0 for j 6= k; l and it holds = 

k;l

as well as� 2 (�

k

; �

l

). The constraints
kk = 1 and�() = � give



2

k

=

�

k

(�

l

� �)

�(�

l

� �

k

)

and 

2

l

=

�

l

(�� �

k

)

�(�

l

� �

k

)

;

together with

kr�()k

2

=

4

(;�

�1

)

2





(I � ��

�1

)





2

=

4�

2

(�� �

k

)(�

l

� �)

�

k

�

l

: (3.24)

Since�
k

< � < �

l

one finally obtains

d

d�

k

kr�()k

2

= �

4�

3

(�

l

� �)

�

l

�

2

k

< 0 and
d

d�

l

kr�()k

2

=

4�

3

(�� �

k

)

�

k

�

2

l

> 0:

Thuskr�()k takes its minimum in
i;i+1

and its maximum in
1;n

.

3.2.2 Extremal properties of the coneC


()

Theopening angle'


() of the circular coneC


(),

C



() = f�d : d 2 E



(); � > 0g;

enclosingE


() is defined by

'



() := sup

z2C



()

aros(

��

�1



k��

�1

k

;

z

kzk

): (3.25)

The complementary angle to'


() in C
1

() is theshrinking angle

 



() := '

1

()� '



():

The shrinking angle turns out to be relevant in the following. We note that the action of
PINVIT can be understood as a shrinking of the initial coneC

1

(): while  is located on the
surface ofC

1

(), all global extrema of the Rayleigh quotient (as long ase

1

is not contained
in C



()) are taken on the surface ofC


(). Lemma 3.11 reveals a close relation between
kr�()k and'



(),  


().

Lemma 3.11. Let � 2 (�

1

; �

n

) and 2 [0; 1℄. The trivial cases'


() = 0 ( 


() = 0) can
only be taken iff = 0 ( = 1) or  = e

i

for i = 2; : : : ; n� 1.
For non-vanishing angles and� 2 (�

i

; �

i+1

) the opening angle'


() and the shrinking
angle 



() on the level setL(�) take their minimum in
i;i+1

and their maximum in
1;n

.
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Proof. Using Theorem 3.5 we can rewrite'


() as

'



() = arsin

 k(I � ��

�1

)k

k��

�1

k

and '

1

() = artan

k(I � ��

�1

)k

kk

: (3.26)

In order to show that the proposition holds for = 1, note thatartan(�) is strictly monotone
increasing. Hence, it suffices to check the extremal properties fork(I � ��

�1

)k = kk. Since
� andkk are fixed onL(�), the opening angle'

1

() takes its extrema in the same arguments
askr�()k. Therefore, Theorem 3.10 proves the proposition.

Now let 2 (0; 1), then we have from (3.26)

sin ('



()) =  sin ('

1

()) : (3.27)

Sincesin(�) is a strictly monotone increasing function on[0; �
2

℄ and by using the definitions
'

1

(

1;n

) := minf'

1

() :  2 L(�)g as well as'
1

(

i;i+1

) := maxf'

1

() :  2 L(�)g, one
obtains for 2 (0; 1)

 sin ('

1

(

1;n

)) = minf sin ('

1

()) :  2 L(�)g;

 sin ('

1

(

i;i+1

)) = maxf sin ('

1

()) :  2 L(�)g:

Applying (3.27) as well as the monotonicity ofsin(�) leads to

'



(

1;n

) = minf'



() :  2 L(�)g; '



(

i;i+1

) = maxf'



() :  2 L(�)g;

which establishes the required result.
To prove the proposition for 



(), let a := k(I � ��

�1

)k = k��

�1

k, then

	



(a) :=  



() = arsin(a)� arsin(a):

Note that'
1

() takes its extrema in the same arguments asa = sin'

1

. Differentiation of
	



(a) shows that for 2 (0; 1)

d

da

	



(a) =

p

1� 

2

a

2

�

p

1� a

2

p

(1� a

2

)(1� 

2

a

2

)

> 0:

Hence,	


(a) is strictly monotone increasing ina which completes the proof.

3.2.3 Angle dependence of the Rayleigh quotient onC



()

To analyze the dependence of the Rayleigh quotient on the opening angle'


on C


() we
define the plane

P

;w

:= spanf��

�1

; wg; (3.28)
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Figure 3.3:The 2D cross-sectionP
;w

.

wherew given by (3.12) denotes a point of an infimum of the Rayleigh quotient onC


(). Now
parametrize the unit circle inP

;w

by z(') so that' = ℄(z('); ��

�1

) andz('�) = w= kwk

for '� < �.
To express the angle dependence of the Rayleigh quotient inP

;w

we define

�

;w

(') := �(z(')):

Lemma 3.12. On the assumptions of Theorem 3.9 let'

� so thatz('�) = w= kwk. Then it
holds

j

d�

;w

d'

('

�

)j = kr�(

w

kwk

)k: (3.29)

Proof. The chain rule yields

d

d'

�(z(')) = (r�(z(')); z

0

(')) : (3.30)

Sincekz(')k = 1, the derivativez0(') with kz0(')k = 1 is tangent to the unit circle inP
;w

,
i.e. (z('); z0(')) = 0. By (3.14) the gradientr�(w= kwk) is contained inP

;w

and is collinear
to the tangent vectorz0('�) in w= kwk, cf. Figure 3.3. We conclude

z

0

('

�

) = �

r�(v)

kr�(v)k

: (3.31)

Inserting (3.31) in (3.30) for' = '

� completes the proof.

Now define by�(; ') the minimum of the Rayleigh quotient onC


() having the opening
angle' = '



, i.e.
�(; ') := inf �(C

(')

());
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for ' 2 [0; aros((;�

�1

)=(kk k�

�1

k)℄.
Lemma 3.13 discloses the identity of the derivatives(d

�

�(; ')=d') and (d�
;w

(')=d')

within infimum points.

Lemma 3.13. On the assumptions of Theorem 3.9 letw be an infimum point which encloses
the angle'� = ℄(��

�1

; w) with the axis���1 ofC


(). Then it holds

j

d�

d'

(; '

�

)j = j

d�

;w

d'

('

�

)j = kr�(

w

kwk

)k: (3.32)

Proof. Both �
;w

(') and��(; ') are continuously differentiable in'. By definition,�
;w

(')

dominates�(; ') for ' 2 [0; '

1

℄ so that

�(; ') � �

;w

(') and �

;w

('

�

) = �(; '

�

);

where the last identity results from the fact that both functions coincide in'� belonging to the
infimum pointw= kwk. Since�

;w

(')� �(; ') is a positive differentiable function taking its
minimum in'�, we conclude

d�

;w

d'

('

�

) =

d

�

�

d'

(; '

�

):

The proposition follows with (3.29).

3.3 Mini-dimensional convergence analysis

In Section 3.2 we have learnt that several quantities which define the geometry of PINVIT
take their extremal values in 2D invariant subspaces. Hence, not surprisingly, PINVIT takes its
extremal convergence exactly in these 2D invariant subspaces. To pave the way for the PINVIT
convergence Theorem 3.15, we now carry out a mini-dimensional analysis inspanfe

i

; e

j

g.
Therefore, we pursue an alternative approach compared to the construction used in Theorem
5.1 in [95].

Theorem 3.14. Let  2 R

2 , kk = 1 and� = diag(�

j

; �

i

), �
i

< �

j

(reversed order of
eigenvalues). The Rayleigh quotient in the point of a supremumw

1

2 arg sup �(E



()) reads

�(w

1

) = �

i;j

(�; ;m

1

); (3.33)

and whenevere
i

=2 C



() andw
2

2 arg inf �(E



()) it holds

�(w

2

) = �

i;j

(�; ;m

2

); (3.34)

where

�

i;j

(�; ;m) = �

i

�

j

�

�

j

�

�

j

� �

i

1 +m

2

�

�1

: (3.35)
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Figure 3.4:Geometric setup inspanfe
i

; e

j

g.

Thereinm
1

(m
2

) is the slope of a ray through 0 and tangent toE


() which maximizes (mini-
mizes) the Rayleigh quotient with

m

1

=

yl � rx

xl + ry

; and m

2

=

yl + rx

xl � ry

; (3.36)

where(x; y)T = ��

�1

, r = k(I � ��

�1

)k andl =
p

x

2

+ y

2

� r

2.
One explicitly obtains�+

i;j

= �

i;j

(�; ;m

1

) and��
i;j

= �

i;j

(�; ;m

2

) in the form

�

�

i;j

(�; ) := ��

i

�

j

(�

i

+ �

j

� �)

2

=

�



2

(�

j

� �)(�� �

i

)(��

j

+ ��

i

� �

2

i

� �

2

j

)

�2

p

�

i

�

j

(�� �

i

)(�

j

� �) (3.37)

�

q

�

i

�

j

+ (1� 

2

)(�� �

i

)(�

j

� �)

��(�

i

+ �

j

� �)(��

j

+ ��

i

� �

2

i

� �

i

�

j

� �

2

j

)

�

:

Proof. Since all global extrema of�(�) onE


() are located on the surface of the enclosing
coneC



(), we compute the two points of intersection of�E


() and�C


(). Therefore,
consider the following parametrization of the circle�E



() by

E(') = ��

�1

+ r

�

sin'

os'

�

; ' 2 [0; 2�):

We are looking for allm so that the ray(�;m�), � 2 R, has a unique point of intersection with
E



(), see Figure 3.4. Elimination of� results in

m(x + r sin') = y + r os';
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so that we are looking for the minimumm
1

and maximumm
2

of

g(') :=

y + r os(')

x + r sin(')

:

The necessary condition(dg(')=d') = 0 reads

x sin(') + y os(') + r = 0:

From this we determinem
1

andm
2

as given by (3.36) and obtain as the points of intersection

(�

1

; �

1

) = (

xl

2

+ ryl

x

2

+ y

2

;

q

l

2

� �

2

1

); (3.38)

(�

2

; �

2

) = (

xl

2

� ryl

x

2

+ y

2

;

q

l

2

� �

2

2

): (3.39)

The Rayleigh quotient (2.18) of(�; �)T reads

�

�

i;j

(�; ) = �((�

1;2

; �

1;2

)

T

) = �

i

�

j

�

�

j

�

�

j

� �

i

1 +m

2

1;2

�

�1

:

In order to derive (3.37), we determine the components of thepositive vector 2 R

2 with
kk = 1 and�() = �



i

=

�

�

i

(�

j

� �)

�(�

j

� �

i

)

�

1=2

; 

j

=

�

�

j

(�� �

i

)

�(�

j

� �

i

)

�

1=2

: (3.40)

Hence(x; y)T = ��

�1

 reads

x =

s

�(�� �

i

)

�

j

(�

j

� �

i

)

; y =

s

�(�

j

� �)

�

i

(�

j

� �

i

)

; (3.41)

while r andl are given by

r = 

s

(�� �

i

)(�

j

� �)

�

i

�

j

; l =

s



2

(�

i

� �)(�

j

� �) + �(�

i

+ �

j

� �)

�

i

�

j

: (3.42)

Inserting (3.41) and (3.42) in (3.36) and (3.35) results, after wearisome calculations, in (3.37).
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3.4 Convergence estimates for the Rayleigh quotient

While in [95, 96] only thepoorestconvergence of PINVIT(1) is analyzed, we now collect the
results gained in the previous Sections 3.1–3.3 to formulate estimates concerning itsbest(or
fastest possible) convergence. We differentiate between the best and poorest choice of both the
preconditioner and also that of the best and poorest choice of the iteration vector from the level
setL(�). Clearly the estimates are sharp since we have (implicitly)constructed the precondi-
tioners of best/poorest convergence as well as the vector in which best/poorest convergence
is attained. The reader should be aware of the fact that all estimates hold independently of the
choice of the basis (- or x-basis).

Theorem 3.15 (PINVIT convergence estimates on fastest convergence).
Consider the level setL(�) of coefficient vectors 2 R

n with respect to the-basis having
the Rayleigh quotient� = �() 2 (�

i

; �

i+1

) for some indexi, 1 � i < n. Furthermore, we
consider all admissible preconditioners satisfying the constraint (2.7) for a given 2 [0; 1).

Then for the fastest convergence of preconditioned inverseiteration (depending on the
choice of the preconditioners from the set of all admissiblepreconditioners as well as for all
 2 L(�), i.e. the level set of all vectors having the Rayleigh quotient �) it holds that:

1. If e
1

2 C



(), i.e. the infimum of the Rayleigh quotient on the set of possible iterates
E



() equals�
1

, then PINVIT may terminate in a single step within an eigenvector
corresponding to the smallest eigenvalue�

1

. (A necessary and sufficient condition de-
scribing this case of immediate termination is given by Lemma 3.2.)

Otherwise, the largest possible decrease of the Rayleigh quotient within one step of
PINVIT (for the most favorable choice of the preconditionerand the best choice 2
L(�)) is attained in = 

1;n

with



1;n

= (

1

; 0; : : : ; 0; 

n

):

The associated smallest possible Rayleigh quotient�

0 of the new iterate is given by

�

0

= �

�

1;n

(�; );

where��
1;n

(�; ) is defined by Equation (3.37).

2. Under the assumption of 1., one obtains for the choice of the poorest preconditioner
(maximizing the Rayleigh quotient onE



()) if applied to the vector of fastest conver-
gence

1;n

2 L(�) as the Rayleigh quotient of the new PINVIT iterate

�

0

= �

+

1;n

(�; ):
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3. Once more assumee
1

=2 C



(). Then best preconditioning within the vector of poorest
convergence

i;i+1

2 L(�) (compare Theorem 2.8) results in the Rayleigh quotient

�

0

= �

�

i;i+1

(�; )

as an upper estimate for the fastest decrease of the Rayleighquotient.

Proof. To show (1), our idea is to follow the curve of extremum points(infima and suprema)
as given by

(�I + �)

�1

=





(�I + �)

�1







;

for � 2 (�

min

;1) with a proper choice of�
min

, and to compare the decrease of the Rayleigh
quotient along this curve with that on the analogous curve ofextremum points defined by


1;n

2 L(�). We call these curvesS() andS(
1;n

). We start on these curves at and
1;n

(having equal Rayleigh quotients), run alongS(), (S(
1;n

)), and finally end in the infimum
points onC



(), (C


(

1;n

)).
First note that by Lemma 3.11 the opening angle'



takes its maximum onL(�) in 
1;n

so
that for any 2 L(�)

'



(

1;n

) � '



();  2 [0; 1℄:

Let v (v
1;n

) be two normed extremum points (either infima or suprema) on the curvesS
(S(

1;n

)) in such a way that�(v) = �(v

1;n

). The angles enclosed with the axes of the associate
cones are denoted by

'

�

= \(v; ��

�1

) and '

�

1;n

= \(v

1;n

; ��

�1



1;n

):

We parametrize the curvesS in ' starting at (
1;n

) for ' = 0 and ending in

'

�

1;n

+ '



(

1;n

) � '

�

+ '



();

if v (v
1;n

) are infimum points. As long asv (v
1;n

) are supremum points, we only consider the
complementary shrinking angles, see the proof of Theorem 1.1 in [96].

Let �(; ') be the Rayleigh quotient on the curveS() as parametrized in'. Then for the
derivatives of�(; ') and�(

1;n

; ~'

1;n

) within the extremum points, Lemma 2.6 in [96] and
Lemma 3.13 together with Theorem 3.10 result in

j

d�

d'

(; ~')j � j

d�

d'

(

1;n

; ~'

1;n

)j; (3.43)

where~' and ~'

1;n

define points of equal Rayleigh quotients onS() andS(
1;n

), respectively.

Now f(') = �(

1;n

; ') andg(') = �(; ') are monotone decreasing, differentiable pos-
itive functions. Equation (3.43) simply says that in all arguments�; � having the same value
f(�) = g(�), the (negative) derivatives fulfill

f

0

(�) � g

0

(�):
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Hence, withf(0) = g(0) it holds

f(a� �) � g(b� �);

where we next identify� with the smaller angle� = '

�

+ '



(). We conclude for the even
larger angle'�

1;n

+ '



(

1;n

) that

�(

1;n

; '

�

1;n

+ '



(

1;n

)) � �(; '

�

+ '



());

which proves the first proposition. The Rayleigh quotient�

0

= �

�

1;n

(�; ) is a consequence of
Theorem 3.14 fori = 1 andj = n and the best preconditioning belonging to “–” in (3.37).

To show (2), we proceed analogously as in the proof of Theorem1.1 in [96] but compare
the curves of suprema points of and

1;n

2 L(�). Then for the opening and shrinking angles
it holds that

'



() � '



(

1;n

) and  



() �  



(

1;n

):

Instead of (3.1) in [96] one has
�

�

�

�

d

�

�

d'

(; '

�

)

�

�

�

�

�

�

�

�

�

d

�

�

d'

(

1;n

; '

�

1;n

)

�

�

�

�

:

Comparing the decrease of��(; ') and��(
1;n

; ') shows that

�

�(; '

1

()�  



()) �

�

�(

1;n

; '

1

(

1;n

)�  



());

which proves the second proposition since

�

�(; '



()) >

�

�(

1;n

; '



(

1;n

)):

The Rayleigh quotient�+
1;n

results from applying the mini-dimensional analysis to the2D
spacespanfe

1

; e

n

g, see Section 3.3.
Finally, for the proof of (3) we proceed similarly to (1) but compare; 

i;i+1

2 L(�). Let
us remark that the Rayleigh quotient��

i;i+1

(�; ) provides only an estimate from above since
by the construction all infima are forced to be located inspanfe

i

; e

i+1

g. But as a matter of fact,
the bifurcation of the infimum curve by introducing components toe

1

hastens the decrease of
the Rayleigh quotient.

Let us illustrate the convergence estimates derived in Theorem 3.15 on the basis of the
example used in Section 2.4, i.e. the eigenvalue problem for�

h

in R2 with eigenvalues given
by (2.30). In Figure 3.5 the quotients

�

�

i;j

(�; ) :=

�

�

i;j

(�; )� �

i

�� �

i

; (3.44)
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Figure 3.5: a

b

PINVIT convergence estimates. (a) Poorest (�

+

i;i+1

) and fastest (~��
1;n

) conver-

gence, = 0; 0:1; : : : ; 1. (b) Supplementing the remaining combinations:�

�

i;i+1

by dashed
lines and�+

1;n

by dotted lines.



76 3. Analysis of fastest convergence

�

�

i;j

(�; ) defined in Theorem 3.14, are drawn for� 2 [2; 17℄. First, in the upper part of Figure
3.5 the estimates�+

i;i+1

(�; ), as already displayed in Figure 2.2, are supplemented by the
bounds��

1;n

(�; ) reflecting the fastest decrease of the Rayleigh quotient. Weremark that
the assumptione

1

=2 C



(), as made in Theorem 3.15, is only made to avoid tiresome case
distinctions. Whenever for some�� 2 [�

1

; �

n

℄ it holds that��
1;n

(�

�

; 

�

) = �

1

, thene
1

2 C



()

for any larger than�. Hence, what actually is drawn in Figure 3.5 is

~

�

�

1;n

(�; ) := min

~�

�

�

1;n

(�; ~): (3.45)

Finally, in the lower part of Figure 3.5 the remaining combinations are illustrated. They cor-
respond to the best choice inL(�) together with poorest preconditioning (case�

+

1;n

, see dot-
ted lines) and poorest choice fromL(�) together with best preconditioning inspanfe

i

; e

i+1

g,
i.e. the case��

i;i+1

as drawn by dashed lines.
This numerical example shows a wide corridor between best and poorest convergence.

While the estimates on poorest convergence in[�

i

; �

i+1

℄ do not depend on the largest eigen-
value�

n

(we exclude the trivial casei+1 = n), the estimates��
1;n

on the faster convergence do
so. Hence, whenever�

n

increases, the corridor between poorest and best convergence widens,
allowing increasingly faster convergence. Inspanfe

1

; e

n

gwe can also determine the particular
�

�, below which PINVIT(1) is capable of converging toe
1

in only one step. Condition (3.2)
in spanfe

1

; e

n

g leads to

�

�

= �

n

�

1 +

�

1



2

(�

n

� �

1

)

�

�1

: (3.46)

There is also a critical bound� so that for < 

� the eigenvectore
1

is never contained in
C



(). Setting�� = �

1

in (3.46) and solving for results in



�

=

�

1

�

n

� �

1

:

Therefore, a large�
n

, as�
n

' h

�2 for�
h

, makes one-step convergence under weak conditions
possible, cf. the curves~��

1;n

in Figure 3.5. The bold curves in Figure 3.5 are associated with
 = 0 or inverse iteration. Not surprisingly, PINVIT may converge faster than INVIT as
the most favorable choice of the preconditioner hastens convergence compared to INVIT. The
upper bold curves correspond to

i;i+1

, i = 1; : : : ; 4, while the lower bold curve reflects the
fastest possible convergence of INVIT in

1;n

.

Finally, Figure 3.6 is the pendant of Figure 1.2 shown in Section 1.4 containing the model
analysis of INVIT(1). The bold curves ( = 0) in Figure 3.6 are identical with the bounds
B(�

1

; �

n

; �) andB(�
i

; �

i+1

; �), for i = 1; : : : ; 4, as drawn in Figure 1.2. The lower curves
~

�

�

1;n

(�; ) for  = 0; 0:1; : : : ; 1 are defined in a similar way as~�
1;n

(�; ) in (3.45).
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Figure 3.6: Plot of �+
i;i+1

(�; ) (upper curves) and~��
1;n

(�; ) (lower curves) for =

0; 0:1; : : : ; 1.

3.5 Critical conclusion

� Sharp convergence estimates for PINVIT(1) have been derived. Most of these estimates
are sharp in�, , �

i

, �
i+1

or �, , �
1

, �
n

, respectively.

� These estimates substantiate that PINVIT(1) may converge much more rapidly than sug-
gested by Theorem 2.8 on the poorest PINVIT convergence. PINVIT may even converge
faster than INVIT (the case of exact preconditioning). Under the (weak) condition of
Lemma 3.2one-step convergence to an eigenpair is possible.

� The main drawback of the convergence estimates presented sofar is their complicated
dependence on�,  and�

i

, �
i+1

or �
1

, �
n

, respectively.

� The bounds of Theorems 2.8 and 3.14 do not allow a simple recursive representation for
estimating multiple-step convergence.

Some remedy overcoming the listed disadvantages will be given in Chapter 4.
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4. CONCISE CONVERGENCE ESTIMATES

In Chapters 2 and 3 sharp upper and lower bounds for the Rayleigh quotient of the PINVIT(1)
iterates have been derived. These estimates, as given in Theorems 2.8 and 3.15, suffer from
the complexity of Equations (2.27) and (3.37) with their complicated dependence of��

i;j

on
�

i

, �
j

, � and. This makes it difficult to judge on the quality of the convergence estimates
and impedes any comparison with the convergence factors of other simplified or improved
(preconditioned) eigensolvers. These circumstances establish the need to derive simplified
estimates without sacrificing too much sharpness.

Here, we derive easy-to-read convergence estimates for theRayleigh quotient in terms of
the�

p;q

factors as introduced in the model analysis of INVIT(1) in Section 1.4. The resulting
bounds are sharp in�

i

, �
i+1

and, but only asymptotically sharp in�. They turn into the pre-
viously derived estimates as� tends to�

i

. The (minor) drawback of losing (non-asymptotic)
sharpness in� is compensated by having easy-to-use convergence factors which allow a re-
cursive representation, too.

The results presented in this chapter originate from a jointwork with Andrew Knyazev,
University of Colorado at Denver; see also [73]. In the following these new bounds will be
gained in two distinct ways:

1. In Section 4.1 we use the results of the mini-dimensional analysis of Section 3.3 to find
an advantageous compact representation of�

p;q

(�

0

)=�

p;q

(�) in terms of those geomet-
ric quantities which define the geometry of PINVIT inspanfx

p

; x

q

g. This analysis does
not provide an independent proof of PINVIT convergence, since it makes use of the
complete PINVIT theory including the mini-dimensional analysis.

2. The second approach is built upon certain matrix functions designed to represent the
extremum points of�(�) on the ballE



, i.e. we make use of the representation

F (�; x) = �(�I + A)

�1

x (4.1)

of points of absolute extrema, cf. Theorem 3.9 and Theorem 4.8 in [95]. This proof
technique may have the potential to make a new succinct convergence proof possible for
PINVIT as well as for improved conjugate-gradient like preconditioned eigensolvers as
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PINVIT(3,s), or LOBPCG. The idea of this promising technique goes back to Knyazev
[67, 68]. But at the moment the explicit form of� as a function of�

i

, �
j

, � and in 2D,
see Equation (3.18), is needed. Presently, no simple formula is known unveiling this
dependence in the general case. Thus the present analysis isjust an alternative form of
the mini-dimensional analysis given in [95], Section 5. Thefurther analysis is currently
under investigation as a joint work with A. Knyazev.

4.1 Reformulation of the mini-dimensional analysis

By attacking the mini-dimensional PINVIT analysis (see Theorem 5.1 in [95]), Theorem 4.1
provides a succinct form of the PINVIT estimates; see also [73]. A recursive formulation is
given by Equation (4.4).

Theorem 4.1. Let a nonzero vectorx(0) 2 R

n be given and let(x(j); �(j)) be the sequence
of PINVIT iterates forj = 0; 1; 2; : : :. The preconditioner is assumed to satisfy (2.2) for
 2 [0; 1). If �(j) = �(x

(j)

) 2 [�

k

; �

k+1

) then either�(j+1)

< �

k

or

�

k;k+1

(�

(j+1)

) �

�

 + (1� )

�

k

�

k+1

�

2

�

k;k+1

(�

(j)

); (4.2)

where

�

k;k+1

(�) =

�� �

k

�

k+1

� �

: (4.3)

Whenever�(j) < �

2

, then form = 1; 2; : : : the recursive estimate

�

1;2

(�

(j+m)

) �

�

 + (1� )

�

1

�

2

�

2m

�

1;2

(�

(j)

) (4.4)

holds.
The estimate (4.2) is sharp in�

k

, �
k+1

and. It is asymptotically sharp in� and turns into
a sharp estimate (cf. Theorem 2.8) as�! �

k

.

Proof. We make use of the notation concerning the geometric quantities used in the mini-
dimensional analysis in Theorem 5.1 in [95]; for the definition and meaning of�, �, x, y, r
andl see the very place. Without loss of generality letk = 1. The Rayleigh quotient�

1;2

(�; )

within the supremum onE


reads

�

1;2

(�; ) =

�

2

+ �

2

�

2

=�

1

+ �

2

=�

2

; (4.5)

where(�; �) are the coordinates of the supremum point, see Equation (5.6) in [95]. Then the
ratio

�

1;2

(�

1;2

) =

�

1;2

� �

1

�

2

� �

1;2
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by inserting (4.5) as well as

(�; �) = (

p

l

2

� �

2

;

xl

2

+ ryl

x

2

+ y

2

); (4.6)

is transformed to

�

1;2

� �

1

�

2

� �

1;2

=

�

2

�

1

�

2

�

2

=

�

1

�

2

(xl + ry)

2

(x

2

+ y

2

)

2

� (xl + ry)

2

:

We have
p

(x

2

+ y

2

)

2

� (xl + ry)

2

= �(yl � xr);

whereyl � xr is the positive root because ofy > r.
For the quotient of

1

and
2

, see Equation (3.17), it holds
�



1



2

�

2

=

�

1

(�

2

� �)

�

2

(�� �

1

)

;

so that
�

2

� �

�� �

1

=

�

2



2

1

�

1



2

2

=

y

2

�

1

x

2

�

2

:

Then the convergence factor�, defined by

�

1;2

� �

1

�

2

� �

1;2

�

�

2

� �

�� �

1

=

�

2

1

y

2

�

2

2

x

2

(xl + ry)

2

(yl � rx)

2

=: �

2

; (4.7)

reads

� =

�

1

y(xl + ry)

�

2

x(yl � rx)

=

�

1

�

2

�

1 +

yr

xl

1�

xr

yl

> 0: (4.8)

Direct computation shows that

yr

xl

= (�

2

� �)

�

�

2

�

1

�

1=2

z

�1=2

and
xr

yl

= (�� �

1

)

�

�

1

�

2

�

1=2

z

�1=2

with z := 

2

(�

1

� �)(�

2

� �) + �(�

1

+ �

2

� �) > 0. Hence

�[�℄ =

�

�

1

�

2

�

1=2

z

1=2

+ (�

2

� �)

�

�

2

�

1

�

1=2

z

1=2

� (�� �

1

)

: (4.9)
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For� = �

1

, we have

�[�

1

℄ =  + (1� )

�

1

�

2

;

or

�[�

1

℄ =

�

1

�

2

+ (1�

�

1

�

2

):

To complete the proof we show that

�

0

[�℄ < 0;

which is equivalent to



p

�

1

�

2

(�

2

� �

1

) < (�

2

� �

1

)z

1=2

+ (

d

d�

z

1=2

) f�

2

(�

2

� �) + �

1

(�� �

1

)g :

The last inequality is true, since for its square (by insertingz as well asd

d�

z

1=2 and subsequent
factorization) it holds the true inequality

(1� 

2

)(�

2

� �

1

)

2

(�

1

+ �

2

� �)

2

[(1 + )�

1

+ (1� )�

2

℄ [(1� )�

1

+ (1 + )�

2

℄ > 0:

Sharpness of (4.2) in�
1

, �
2

and is a consequence of the construction of (4.9) and Theorem
1.1 in [96]. The asymptotic sharpness for�! �

1

follows from (4.9), too.

4.2 A matrix function approach

The idea of this approach is to restrict the PINVIT scheme only on those preconditioners re-
sponsible for the best and poorest convergence. By Theorem 4.8 in [95] (case of suprema)
and Theorem 3.9 (case of infima) those points of absolute extrema can be represented in the
form of (4.1), i.e. inverse iteration with a positive shift (suprema) or negative shift (infima), re-
spectively. In Section 4.2.1 we first describe a general setup for iterative eigensolvers induced
by certain matrix functions, which damp out the invariant subspace ofA belonging to the
eigenvalues�

2

; : : : ; �

n

. These results will be used later (in Section 4.2.2) within the PINVIT
setup.

4.2.1 An abstract convergence estimate

Only for this section assumeA 2 R

n�n to be a symmetric and positive definite matrix with
the eigenvalues�

1

� : : : � �

n

of arbitrary multiplicity. In the preparatory Lemma 4.2 we
formulate an abstract condition showing that the Rayleigh quotient is increased, if some rela-
tive damping is applied to its argument in a way that the spectral components belonging to the
smaller eigenvalues are decreased.
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Lemma 4.2.Suppose a nonzerox 2 R

n with�
m

� �(x) < �

m+1

to be given. Its expansion in
normed eigenvectorsx

i

ofA is written asx =

P

n

i=1



i

x

i

. If for the componentsa
i

of a 2 R

n

it holds that
maxfja

1

j; : : : ; ja

m

jg � minfja

m+1

j; : : : ; ja

n

jg;

theny :=
P

n

i=1

a

i



i

x

i

satisfies�(x) � �(y).

Proof. Let ja
k

j = minfja

m+1

j; : : : ; ja

n

jg. If a
k

= 0, thena
1

= : : : = a

m

= 0 and then
�(y) � �

m+1

. Next assumeja
k

j > 0 so that

�(y) =

P

i�m

(a

i

=a

k

)

2



2

i

�

i

+ 

2

k

�

k

+

P

i�m+1; i 6=k

(a

i

=a

k

)

2



2

i

�

i

P

i�m

(a

i

=a

k

)

2



2

i

+ 

2

k

+

P

i�m+1; i 6=k

(a

i

=a

k

)

2



2

i

:

A direct computation shows that any decrease of componentsi � m by (a
i

=a

k

)

2

� 1 or any
increase of componentsi � m + 1 by (a

i

=a

k

)

2

� 1 results in an increased Rayleigh quotient
which proves the assertion.

Lemma 4.2 proves Lemma 2.3.2 in [68] reproduced as a corollary.

Corollary 4.3. LetF = F (A) be a real matrix function [45] ofA and assumex 2 R

n with
�

m

� �(x) < �

m+1

to be given. If

jF (�

i

)j � 1; i = 1; : : : ; m; and jF (�

i

)j � 1; i = m+ 1; : : : ; n;

then�(x) � �(F (A)x).

Now, consider the linear iterative scheme

x

0

= Fx (4.10)

associated with the matrix functionF = F (A), which maps a given iteratex to the next iterate
x

0. Theorem 4.4 formulates a condition under which (4.10) can serve as an eigensolver. This
theorem is reproduced from Theorem 2.3.1 in [68] (in Russian); it also appeared (without a
proof) as an English translation in [69].

Theorem 4.4. For any nonzerox 2 R

n with �(x) 2 (�

1

; �

2

) and under the assumption that
F (�

1

) 6= 0 and

� := max

i>1

�

�

�

�

F (�

i

)

F (�

1

)

�

�

�

�

< 1

we have
��(x

0

) � �

2

��(x); (4.11)

where

��(y) :=

�(y)� �

1

�

2

� �(y)

:
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Proof. Let us define^F as follows

^

F (�

1

) = F (�

1

)

^

F (�

i

) = max

j>1

jF (�

j

)j = �F (�

1

) for 1 < i � n;

andx̂ =

^

F (A)x. From Corollary 4.3 we obtain

�(x

0

) � �(x̂) � �(x): (4.12)

We define the2-dimensional spaceH [2℄

:= spanfx; x̂g = spanfx; x̂; x

1

g, where(x
1

; �

1

)

denotes the smallest eigenpair ofA. The last equality holds since^F treats all spectral compo-
nents ofx different tox

1

in the same way.
Let A[2℄

= P

[2℄

A be the projection ofA to H

[2℄ and letQ be the orthoprojector on
spanfx

1

g. ThenQx and (I � Q)x are the eigenvectors ofA[2℄, sinceQx as a multiple of
x

1

minimizes the Rayleigh quotient and(Qx; (I � Q)x) = 0. The eigenvalues ofA[2℄ are
�(Qx) = �

1

and the Rayleigh quotient of(I �Q)x with respect toA orA[2℄.
Direct computation using

x = Qx + (I �Q)x

x̂ =

^

Fx = F (�

1

)(Qx+ �((I �Q)x))

together with((I �Q)x;AQx) = 0 shows that

�(x̂)� �

1

�((I �Q)x)� �(x̂)

= �

2

�(x)� �

1

�((I �Q)x)� �(x)

: (4.13)

Recognizing that the quotient on the left-hand side of (4.13) is a monotone increasing function
in �(x̂) together with (4.12) results in

�(x

0

)� �

1

�((I �Q)x)� �(x

0

)

�

�((I �Q)x)� �(x)

�(x)� �

1

� �

2

:

Finally, note that the left-hand side is an increasing function in �((I � Q)x). The Courant-
Fischer principle implies�((I �Q)x) > �

2

which establishes Equation (4.11).

4.2.2 Several estimates on extremal convergence

The aim of this section is to apply Theorem 4.4 in order to derive convergence estimates
for preconditioned inverse iteration. The central idea is to consider the curveF (�;A)x =

�(�I + A)

�1

x through the points of absolute extrema as derived in Theorem4.8 in [95]
concerning points of suprema and in Theorem 3.9 of this work concerning points of infima.

We first observe that points of extrema can be represented by applying the operator�(�I+
A)

�1 to the given iteratex. The latter operator depends in a complex and nonlinear way on the
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iteratex, as� and� are function ofx and; cf. the discussion in Section 3.1.4. Obviously, the
scaling constant� is meaningless as it does not influence the Rayleigh quotientof F (�;A)x.
In the following, we therefore set� = 1. Unfortunately, the shift parameter� causes some
trouble because of itsimplicit definition by (3.16). Only within 2D invariant subspaces of
A, Equation (3.18) gives anexplicit formula for�. In spanfx

i

; x

j

g, which is the invariant
subspace to the eigenvalues�

i

and�
j

, �
i

< �

j

, it holds

�

�

=



p

�

i

�

j

�(1� 

2

)

�



p

�

i

�

j

�

q

(1� 

2

)(�

j

� �)(�� �

i

) + �

i

�

j

�

(4.14)

where�+

> 0 (�� < 0) belongs to a supremum (infimum) point. The choice� = 0 corre-
sponds to inverse iteration, i.e. = 0. Then best and poorest convergence coincide in�A

�1

x,
being the only element inE

0

(x).

Consequently, any further analysis using Equation (4.14) is restricted to 2D invariant sub-
spaces ofA. But even an application to such 2D spaces is worthwhile as the mini-dimensional
analysis, cf. Section 3.3, is performed in a 2D invariant subspace ofA. In the following such
an analysis will result in a compact representation of the PINVIT convergence estimates, both
for the best and the poorest decrease of the Rayleigh quotient. We note that the resulting
concise convergence estimates presuppose the justification for the mini-dimensional analysis,
which is given by the “angle analysis onL(�)” ([96, Sections 2 and 3]) and Section 3.2 in this
work.

As already mentioned in the introduction to Chapter 4, the following analysis, which is
based on Equation (4.14), only reflects the current state of research. We hope that a more
general representation of� in theRn can serve to simplify the PINVIT convergence analysis
considerably.

In the following (preparatory) Lemma 4.5 we state some monotonicity of ��, which will
be used in Theorem 4.6.

Lemma 4.5. The shifts�� are strictly monotone functions of� 2 [�

i

; �

j

℄. It holds that

��

+

��

< 0 and
��

�

��

> 0:

Proof. We obtain

��

�

��

�(1� )
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�
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�
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= �
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�
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�

j

�

�

1

�

�

(1� 

2

)(�

j

� �)(�� �

i

) + �

i

�

j

�

1=2

�

(1� 

2

)(�

i

+ �

j

� 2�)

2 ((1� 

2

)(�

j

� �)(�� �

i

) + �

i

�

j

)

1=2

:

(4.15)

To show(��+

=��) < 0 we have to prove that the right-hand side of (4.15), signs correspond-
ing to�+, is negative. After simplification we obtain

0 � 

p

�

i

�

j

�

(1� 

2

)(�

j

� �)(�� �

i

) + �

i

�

j

�

1=2

+ (1� 

2

)

�(�

i

+ �

j

)

2

+ 

2

�

i

�

j

;
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which is clearly true, since all summands are positive.
Finally, (���=��) > 0 is equivalent to

(1� 

2

)

�(�

i

+ �

j

)

2

+ 

2

�

i

�

j

> 

p

�

i

�

j

�

(1� 

2

)(�

j

� �)(�� �

i

) + �

i

�

j

�

1=2

:

Both sides of the last inequality are positive. Hence, aftersquaring and subsequent factoriza-
tion we obtain the following equivalent inequality

0 <

1

4

�

2

(1� 

2

) ((�

j

� �

i

) + �

i

+ �

j

) (�

i

(1� ) + �

j

(1 + )) :

All factors on the right-hand side are positive, which completes the proof.

Theorem 4.6 makes available concise formula for the convergence factors concerning the
poorest and best convergence of PINVIT depending on the choice of the preconditioner and
the iteration vectorx. The convergence factor�

1

on the poorest convergence is the same as
the one which has been derived by a different technique in Theorem 4.1.

Theorem 4.6.Letx(0) 2 R

n and denote the PINVIT iterates by(x(j); �(j)). The preconditioner
for some 2 [0; 1) obeys the quality condition (2.2).

If �(j) 2 [�

k

; �

k+1

) then either�(j+1)

< �

k

or

�

k;k+1

(�

(j+1)

) � �

2

1

�

k;k+1

(�

(j)

); (4.16)

with

�

1

:=  + (1� )

�

k

�

k+1

: (4.17)

For the best choice of the preconditioner inB


, by Equation (2.3), and for the most advanta-
geous selection ofx 2 L(�(j)) the convergence estimate reads

�

1;n

(�

(j+1)

) � �

2

7

�

1;n

(�

(j)

); (4.18)

with

�

7

:=

�

1

�

n

+ (�

n

� �

1

)

: (4.19)

We denote the latter convergence factor by�

7

by reason of some systematics to be introduced
later in Table 4.1.

Proof. Just apply Theorem 4.4 to

x

0

= Fx = �(�I + A)

�1

x;

representing the unique supremum point of�(�) onE


(x). The analysis in [96] provides the
justification to restrict the further analysis to the 2D space spanfx

k

; x

k+1

g. Then

� =

�

�

�

�

F (�

k+1

)

F (�

k

)

�

�

�

�

=

� + �

k

� + �

k+1

:
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Next observe that�[�℄ is strictly monotone increasing in�. Furthermore,� = �

+ by Equation
(4.14) is strictly monotone decreasing in� by Lemma 4.5 so that its maximum is taken in

�

+

[�

k

℄ =



1� 

�

k+1

:

Finally, we get the asymptotically sharp estimate

F (�

k+1

)

F (�

k

)

�

�

+

[�

k

℄ + �

k

�

+

[�

k

℄ + �

k+1

=  + (1� )

�

k

�

k+1

= �

1

: (4.20)

To show the convergence estimate on the best convergence, Theorem 3.15 prescribes the
mini-dimensional analysis inspanfx

1

; x

n

g. For an infimum point we have to deal with nega-
tive��, with��

1

< �

�

< 0, i.e.

� =

�

�

�

�

F (�

n

)

F (�

1

)

�

�

�

�

=

�

�

+ �

1

�

�

+ �

n

:

Since by Lemma 4.5 the function��[�℄ is strictly monotone increasing, its maximum reads

�

�

[�

n

℄ = �

�

1

1 + 

:

Hence,
F (�

n

)

F (�

1

)

�

�

�

[�
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℄ + �

1

�
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[�

n

℄ + �

n

=

�

1

�

n

+ (�

n

� �

1

)

= �

7

:

Theorem 4.6 only contains the most important convergence factors. The remaining combi-
nations of the poorest and best choice of the preconditionerB

�1

2 B



and the iteration vector
x 2 L(�) are listed in Table 4.1. The�-column of Table 4.1 reflects the choice of the minimum
or maximum of��[�℄. The ’+’ (’�’) symbol indicates a choice maximizing (minimizing) the
Rayleigh quotient. Remember that this additional degree offreedom (in comparison with the
PINVIT convergence Theorems 2.8 and 3.15) is the price we have to pay for attaining the
succinct form of the convergence factors�

i

.
Let us mention that�

5

; : : : ; �

8

aredecreasingfunctions of since expanding the ballE


(x)

decreases the smallest attainable Rayleigh quotient. The factors�
6

and�
8

may take the value
0 which reflects the fact that an eigenvector to�

1

is contained in the ballE


, which makes
one-step convergence possible. Corollary 4.7 compiles some relations between the�

i

. It is
proved by simple algebraic manipulations.

Corollary 4.7. For the convergence factors�
i

it holds:

1. �
1

� �

2

� �

6

� �

8

,
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i B x � �
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Table 4.1:PINVIT convergence factors�
i

.

2. �
1

� �

3

� �

7

� �

8

,

3. �
2

� �

4

and�
3

� �

4

,

4. �
5

� �

6

and�
5

� �

7

,

or schematically,

1

2

3

4 5

6

7

8σ σ σ σ

σ

σ σ

σ

.

In the next corollary we show that one-step convergence to aneigenvector belonging to
the smallest eigenvalue is possible if � �

1

=(�

n

� �

1

); compare also the discussion on the
fastest convergence of the PINVIT scheme in the introduction of Chapter 3. For large�

n

this
condition means that even high quality preconditioners inB



can yield one-step convergence.
Compare also with Lemma 3.2 where a similar condition is discussed for the components of
the iteration vector.
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Corollary 4.8. If

 �

�

1

�

n

� �

1

; (4.21)

then a preconditioner is contained inB


and an iteration vector can be found inL(�), �
1

�

� < �

n

, so that PINVIT terminates in a single step within an eigenvector belonging to the
smallest eigenvalue�

1

.

Proof. The convergence factor

max(0;

�

1

�

n

� (1�

�

1

�

n

))

given in the last row of Table 4.1 equals 0, if (4.21) is fulfilled.

4.3 A critical comparison of convergence estimates

After having derived convergence estimates on the poorest and best convergence of PINVIT in
terms of��

i;j

, see Equation (3.44), and in terms of the�
k

, cf. Table 4.1, let us now summarize
the advantages and disadvantages of these representations.

�

�

i;j

-representation:

1. Sharp in�
i

, �
j

, � and.

2. �+

i;i+1

in Figure 3.5 indicates superlinear convergence in each interval[�
i

; �

i+1

).

3. Main drawback: Lengthy formula��
i;j

(�; ), see Equation (3.37). It is very difficult to
assess its dependence on�

i

, �
j

, � and. A recursive estimate, like (4.4), cannot be
given.

�

k

-representation:

1. Sharp in�
i

, �
j

and. But only asymptotically sharp in�; turns into a sharp estimate
for �! �

i

.

2. Easy-to-use convergence factors�

i

. Dependence on�
i

, �
j

and is “visibly” clear.

3. Independence of� allows a recursive representation, see for instance (4.4).

In Figure 4.1 the�
k

-convergence factors are illustrated for the same test problem as used
in Section 3.4, i.e. the first eigenvalues of the 2D Laplacianon [0; �℄2. Thus this figure is to be
understood as the pendant of Figure 3.5 representing the�

�

i;j

factors.
Figure 4.1(a) displays the factors of extremal convergence�

1

and�
7

as defined by Theorem
4.6. While�2

1

is drawn for = 0; 0:1; : : : ; 1, the factor�2
7

is plotted only for = 0 and = 1.
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Figure 4.1: a

b

PINVIT convergence factors�
k

. (a) Slowest (fastest) PINVIT convergence

by �2
1

(�2
7

) for  = 0; 0:1; : : : ; 1:0. (b) Combinations of best/poorest preconditioning with
poorest/best choice ofx 2 L(�).
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For = 1 it holds�2
7

= 1=169—exemplifying the excellent convergence realized by the most
favorable preconditioner in the setB

1

.

The convergence factors for = 0, or exact preconditioning, are drawn by bold lines.
These are the convergence factors of INVIT, i.e.

�

1

= �

i

=�

i+1

and �

7

= �

1

=�

n

;

as shown in Figure 1.3. Finally, in Figure 4.1(b) the factors�

2

3

(dashed lines) and�2
5

(solid
lines) are plotted; they correspond to the remaining combinations of best/poorest precondi-
tioning with poorest/best choice of the iteration vector.
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5. A PRECONDITIONED SUBSPACE EIGENSOLVER

Subspace iterations for computing invariant subspaces to amodest number of eigenvalues
at one of the ends of the spectrum, or in the neighborhood of some shift parameter (in the
case of shift-techniques) are widely accepted for non-preconditioned eigensolvers, see Parlett
[107] and van der Vorst [50]. It is well known that subspace techniques are very effective in
calculating clustered eigenvalues if the relative gap to the non-wanted part of the spectrum
is not too small. Among others, the most prominent examples are the block (inverse) power
method, see Bauer [8] and Rutishauser [116] and the (block) Lanzcos process [78]. Subspace
eigensolvers for very large problems that result from mesh discretizations of partial differential
operators have been described by Hackbusch [52, 55] and Mandel and McCormick [84].

A diagonallypreconditionedsubspace scheme was introduced by Davidson [27], in which
the subspace dimension is increased in each step. The Davidson scheme is very popular
in electronic-structure theory [57, 91] and has been extended to the very successful Jacobi-
Davidson iteration method [121].

Preconditioned subspace iterations for mesh eigenproblems have been suggested and an-
alyzed, e.g., by Samokish [119], D’yakonov and Knyazev [33,34], Meyer [89], D’yakonov
[32], Bramble, Knyazev and Pasciak [15], Zhang, Golub and Law [149], N. [98] and others.
In the works of D’yakonov and Knyazev the first explicit convergence estimates independent
of the meshwidths have been given for a somewhat simplified preconditioned subspace itera-
tion scheme, see Equations (5.1) and (5.3).

5.1 Analysis of simplified subspace solvers

In order to point out some differences between the proof techniques used by D’yakonov and
Knyazev [33, 34] and the one used in the more recent proof of Bramble, Knyazev and Pasciak
[15] and, finally, the proof in [98], let us summarize the definition of PINVIT(1,s) from Algo-
rithm 1.5. For a given subspaceS of Rn let V be the orthogonal matrix of ranks containing
in its columns the Ritz vectorsv

i

, i = 1; : : : ; s, of A in S. The diagonal matrix� 2 R

s�s

contains the Ritz values�
1

� �

2

� : : : � �

s

on its diagonal. Then PINVIT(1,s) mapsV to

~

V = V � B

�1

(AV � V�); (5.1)
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for some preconditionerB�1 2 B


by (2.3). Subsequently, the Rayleigh-Ritz procedure

~

V ���������!

Rayleigh-Ritz
(V

0

;�

0

) (5.2)

supplies the matrixV 0 2 R

n�s containing the new Ritz vectors as well as the diagonal matrix
�

0 of the new Ritz values,�0
1

� : : : � �

0

s

.

In contrast to PINVIT(1,s) the simplified scheme analyzed byD’yakonov and Knyazev
[33, 34] reads

~

V = V � B

�1

(AV � �V ) =

�

I �B

�1

(A� �I)

�

V; (5.3)

i.e. the diagonal matrix� in (5.1) has been substituted by the real parameter�. Therein� is
identified with the largest Ritz value�

s

with respect toV . The iteration serves to determine
more precise approximations to�

s

on the basis of given approximations�
1

; : : : ; �

s

for the
first s eigenvalues. Having computed a sufficiently accurate approximation to�

s

by some
steps of (5.3), the iteration can be used to compute the next eigenvalue�

s+1

by increasing the
dimension of the subspace associated withV .

The analysis of D’yakonov and Knyazev [33, 34] understands

R = I �B

�1

(A� �I);

(as factored out in (5.3)) as a fixed iteration operator acting on the subspace defined byV .
Adhering to this point of view, the matrixR

i

= I � B

�1

(A � �

i

I) can be interpreted as the
iteration operator for theith Ritz vectorv

i

. Hence, in these early works the main difficulty was
seen in the fact of havingseveral differentiteration operators on the approximating subspace.

Bramble, Knyazev and Pasciak [15] keep up this point of view,but overcome the diffi-
culty of a “non-constant” iteration operator. They explicitly analyze damping properties of the
iteration operator

R

i

= I �Q

?

s

B

�1

(A� �

i

I); (5.4)

see Section 4 of [15]. Therein,R
i

only acts on the Ritz vectorv
i

andQ?
s

is theA-orthogonal
projection onto the orthogonal complement of thes-dimensional invariant subspace to the
smallest eigenvalues ofA. The convergence factors in [15] contain the ratio�

i

=�

s+1

, as an-
ticipated from the convergence theory of the classical subspace iteration. But as a severe
drawback, Theorem 2.1 in [15] imposes restrictive conditions under which PINVIT(1,s) is
guaranteed to converge to some invariant subspace ofA.

In contrast to this, the interpretation of PINVIT(k,s) as approximating INVIT(k,s), see
Section 1.2, does not factor out an iteration operator like (5.4), but leads to an error propagation
equation for PINVIT(1,s) of the form

~

V � A

�1

V� = (I �B

�1

A)(V � A

�1

V�): (5.5)
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In this equation the “iteration operator” is simply the error propagation matrixI � B

�1

A

and all difficulties, as described above, disappear. Obviously, we rewrite (5.5) in the form
(5.1) whenever~V is computed in practice. This view on PINVIT(1,s) has distinct advantages,
making the geometric convergence analysis possible as given in [98]. In order to highlight this
simple geometry, let us show how easily one can derive that PINVIT(1,s) preserves the rank
of the iteration subspace; here we give a slightly generalized version of Lemma 3.1 in [98].
Lemma 5.1 should be understood as the subspace-pendant of Lemma 2.4, which also discloses
the geometric interpretation of (5.6) and (5.7).

Lemma 5.1. Let V 2 R

n�s contain in its columnss Ritz vectors ofA so that the matrix of
Ritz values� = V

T

AV is diagonal. Then it holds

V

T

A(V � A

�1

V�) = 0 2 R

s�s

; (5.6)

(A

�1

V�)

T

A(A

�1

V�) = V

T

AV + (V � A

�1

V�)

T

A(V � A

�1

V�); (5.7)

rank(

~

V ) = rank(V ): (5.8)

Proof. Equation (5.6) follows simply by the definition ofV and�. Thus we get theA-
orthogonal decomposition

V

T

AV + (V � A

�1

V�)

T

A(V � A

�1

V�) =

�� (A

�1

V�)

T

A(V � A

�1

V�) = (A

�1

V�)

T

A(A

�1

V�):

Finally, to show that PINVIT(1,s) preserves the rank, lety 2 R

s with V y 6= 0. (Formally, we
allow rank-deficientV .) Then

k

~

V yk

A

� kA

�1

V�yk

A

� k(I � B

�1

A)(V � A

�1

V�)yk

A

� kA

�1

V�yk

A

� k(V � A

�1

V�)yk

A

=

kA

�1

V�yk

2

A

� k(V � A

�1

V�)yk

2

A

kA

�1

V�yk

A

+ k(V � A

�1

V�)yk

A

=

kV yk

2

A

kA

�1

V�yk

A

+ k(V � A

�1

V�)yk

A

> 0:

The last inequality holds, since the numeratorkV yk

A

is nonzero by the assumption. Moreover,
the denominator is positive, too, since in the case of a vanishingA�1V�y the second summand
k(V � A

�1

V�)yk

A

would remain positive.

Note that rank preservation of PINVIT(1,s) provides the necessity to ensure thatrank(V ) =
s. Otherwise, the Rayleigh-Ritz procedure will produce spurious vanishing “Ritz values”.
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5.2 A convergence theorem

In this section we present an extended form of the central convergence theorem for PIN-
VIT(1,s), whose basic version has been given in [98]. This improved form makes use of the
simplified representation of the PINVIT convergence estimates as derived in Chapter 4.

The most surprising fact concerning the following theorem is that we encounter once again
the estimates for the decrease of the Rayleigh quotient as derived for the vector scheme PIN-
VIT. In more detail, Theorem 5.2 claims that theith Ritz value (i = 1; : : : ; s) in the subspace
scheme decreases exactly like the Rayleigh quotient, if thevector schemePINVIT is applied
to the ith Ritz vector. Therefore, Theorem 5.2 does not reflect or express the accelerating
influence of the Rayleigh-Ritz procedure. In contrast to this, from the classical subspace iter-
ation applied to ans-dimensional subspace, one would anticipate a convergencefactor, which
is determined by a quantity like�

i

=�

s+1

.
Nevertheless, the described convergence behavior is not really a weakness of the conver-

gence estimates, since the presented bounds are sharp for each Ritz value individually. The
decisive point is that these estimates are not sharpcollectively—for all Ritz values at thesame
time. We refer to Section 5.3 for the further discussion.

The preconditioned subspace eigensolver convergence theorem reads as follows:

Theorem 5.2. LetV = [v

1

; : : : ; s℄ 2 R

n�s , s < n, be an orthogonal matrix where thev
i

are
Ritz vectors ofA. Application of PINVIT(1,s) defines the matrices of new RitzvectorsV 0 and
new Ritz values�0 by (5.1) and (5.2). Then we have:

1. For �
i

2 [�

k

i

; �

k

i

+1

) andi = 1; : : : ; s it holds that

�

0

i

� �

k

i

;k

i

+1

(�

i

; ); (5.9)

where�
i;j

is defined by (2.27). This estimate is sharp in�
k

i

, �
k

i

+1

, �
i

and for eachi
in a sense that a preconditionerB�1 and a subspaceV can be constructed so that (5.9)
is attained. But the bound (5.9) is not necessarily sharp forall Ritz values collectively.

2. On the assumptions made above it also holds for�

0

i

that either�0
i

< �

k

i

(unless�
i

<

�

i+1

) or that

�

k

i

;k

i

+1

(�

0

i

) �

�

 + (1� )

�

k

i

�

k

i

+1

�

2

�

k

i

;k

i

+1

(�

i

); (5.10)

where�
k

i

;k

i

+1

is defined by (4.3). The latter estimate is sharp in�

k

i

, �
k

i

+1

and, but
only asymptotically sharp in�

i

. It turns into a sharp estimate as�
i

! �

k

i

. The estimate
is not necessarily sharp for all Ritz values collectively.

The proof of estimate (5.9) is given in [98]. To prove the second estimate (5.10), just note
that the bound (5.9) for a fixed indexk

i

is precisely the same as the one derived in Theorem
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2.8 for the vector scheme PINVIT(1). Therefore, the convergence theory presented in Chapter
4 can be applied, which yields (5.10).

Let us summarize the main idea of the PINVIT(1,s) convergence proof. The obvious idea
to treat PINVIT(1,s) by considering thes columns of~V independently (or in other words, to
analyze PINVIT(1,s) ass separate PINVIT(1) iterations) is doomed to failure because thes
ballsE



(v

i

) are not always pairwise disjoint sets. This might make PINVIT(1,s) seem to be a
rank reducing scheme, erroneously. Instead, the first step of the convergence proof consists in
showing that the largest Ritz value�

s

of V behaves like the Rayleigh quotient in the PINVIT(1)
scheme, i.e. if�

s

2 [�

p

; �

p+1

), then

�

0

s

� �

p;p+1

(�

s

; ): (5.11)

To prove the latter equation, the idea is to rewrite for nonzero y 2 R

s the error propagation
equation

~

V y = A

�1

V�y + (I �B

�1

A)(V � A

�1

V�)y

as
~

V y = �(z)A

�1

z + (I � B

�1

A)(V y � �(z)A

�1

z) (5.12)

for z = �(V�y)

�1

V�y. The last equation differs from PINVIT(1) applied toz in the term
z� �(z)A

�1

z substituted byV y� �(z)A�1z. Both latter terms can be interpreted as the radii
of the balls spanned by the setB



. Direct computation shows that

kV y � �(z)A

�1

zk

A

� kz � �(z)A

�1

zk

A

:

Hence the scheme (5.12) defines the smaller ball. We concludethat the Ritz value�
s

in the
case of PINVIT(1,s) decreases faster than the Rayleigh quotient if PINVIT is applied toz. This
finally proves (5.11). The estimates for the remaining Ritz values of the approximating sub-
space are derived by induction on the subspace dimension together with the Courant-Fischer
principles.

5.3 Generalizations and remarks

Because of its practical importance, particularly for finite element discretizations of self-
adjoint and coercive elliptic differential operators, letus mention the generalized matrix eigen-
value problem. Theorem 5.2 also holds for the generalized eigenvalue problem

Ax = �Mx

with symmetric positive definite matricesA andM , see [73, 97]. Then the error propagation
equation reads

~

V � A

�1

MV� = (I � B

�1

A)(V � A

�1

MV�); (5.13)
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where the error propagation matrix is factored out on the right-hand side, which explains that
for the preconditioner the assumption (2.2) remains valid.Consequently, the iterative scheme
of PINVIT(1,s) is given by

~

V = V � B

�1

(AV �MV �): (5.14)

If we relinquish positive definiteness ofM , convergence estimates for a slightly modi-
fied scheme (a scaling parameter is introduced andM is substituted by a shifted matrix) are
available, see [73]. The proof technique was originally suggested by Knyazev [68], see also
[32].

To summarize, we reproduce from [73] the advantages of the subspace convergence theory
given in [98].

� Convergence to an invariant subspace is guaranteed for any initial subspace.

� The convergence rate estimate can be applied recursively.

� The convergence estimate for each of thes Ritz values of PINVIT(1,s) is exactly the
same as the one given in Theorem 2.8 for PINVIT(1).

� The estimates are individually sharp in a sense that for eachRitz value an initial subspace
and a preconditioner can be constructed so that the estimateis attained.

The only serious drawback of these estimates is that they do not reflect the typical behavior
as known from subspace iteration [107], namely that the convergence of theith Ritz value is
controlled by the ratio�

i

=�

s+1

, where�
s+1

is the first unwanted eigenvalue. This lack of the
PINVIT(1,s) estimates takes effect particularly if the eigenvalues of interest�

1

; : : : ; �

s

include
a cluster of eigenvalues so that by nature of estimate (5.9) the convergence of the eigenvalues
within the cluster deteriorates as the degree of clusteringincreases.

The reason for this behavior is to be seen in the fact that the Theorem 5.2 makes nocollec-
tiveassumption on the quality of the approximatingsubspaceand that by no means�

s

� �

s+1

is guaranteed. Instead, Inequality (5.9) only requires theindexesk
i

andk
i+1

of the eigenval-
ues enclosing each of the Ritz values. Inasmuch as the condition �

s

� �

s+1

is not fulfilled,
closeness of�

i

to some eigenvalue�
j

does not imply that the Ritz vectorv
i

approximates the
eigenvector belonging to�

j

. Hence, some Ritz vectors approximating specific eigenvectors
very well, may be mixed with those of poor quality. In such a subspace one cannot expect
to have the typical�

i

=�

s+1

convergence factor. A remedy against this situation would be an
assumption on the quality of the initial subspace like Inequality (2.4) in [15] or some other
comparable condition on the angle enclosed by the actual subspace and the wanted invariant
subspace.
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6. PINVIT(2) – PRECONDITIONED STEEPEST DESCENT

So far we have analyzed the basic preconditioned eigensolvers PINVIT(1) and the correspond-
ing subspace scheme PINVIT(1,s). For both schemes sharp non-asymptotic convergence esti-
mates have been presented. These estimates are upper boundsfor the decrease of the Rayleigh
quotients of the iterates or for the decrease of the Ritz values belonging to the actual iteration
subspace, respectively. In other words, we have now completely described the levelk = 1

within the hierarchy of preconditioned eigensolvers PINVIT(k,s), as introduced in Algorithm
1.5.

Let us now proceed with the analysis of the more complex scheme PINVIT(2), or by
using the customary naming, Preconditioned Steepest Descent. This eigensolver involves the
application of the Rayleigh-Ritz method to the 2D subspace spanned by the actual iterate and
its preconditioned residual. As a first trivial result, the Courant-Fischer principles ensure that
this scheme converges at least as fast as PINVIT(1), cf. Lemma 1.7.

This chapter is organized as follows: In Section 6.1 we introduce PINVIT(2) and show
by elementary examples that it may converge much more rapidly than PINVIT(1). Moreover,
we define a line of demarcation to steepest descent methods for the eigenvalue problem. We
highlight thatsteepest descentandpreconditioned steepest descent, in spite of their common
roots of naming, are only weakly related. As a result of this discussion, we see a much closer
relation between PINVIT(2) and INVIT(2).

Therefore, and as a first step toward a convergence analysis of PINVIT(2), a new conver-
gence analysis of INVIT(2) providing sharp convergence estimates is given in Section 6.2.
In Section 6.3 a convergence analysis of PINVIT(2) follows,which is, once more, mainly
founded upon the underlying geometry. While the dependenceof poorest convergence of
PINVIT(2) on the choice of the preconditioner is cleared up completely, a corresponding mini-
dimensional analysis of PINVIT(2) is based upon a conjecture of 3D-extremal convergence.
Finally, in Section 6.5 some numerical illustration is given, which also provides numerical
evidence for the validity of the 3D-conjecture.
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6.1 Rayleigh-Ritz accelerates convergence

An obvious and simple way to improve convergence of PINVIT(1) consists in scaling the
preconditioned residual by some parameter!, i.e.

x

0

(!) = x� !B

�1

(Ax� �x); (6.1)

and to determine! in such a way that the Rayleigh quotient ofx0(!) is minimized. Such a
minimization appears as the natural choice of!, since we measure the convergence of PIN-
VIT(1) by the decrease of the Rayleigh quotient achievable per step. The Rayleigh quotient of
the new iterate reads

�(x

0

) = �(x� !

�

d) = min

!2R

(x� !d;A(x� !d))

(x� !d; x� !d)

; (6.2)

whered = B

�1

(Ax � �x) denotes the preconditioned residual. The optimal scaling constant
!

� can easily be determined by differentiating the Rayleigh quotient of (6.1) by!; the neces-
sary condition for a relative extremum yields a second orderpolynomial in!�. The resulting
scheme (6.1) in!� is called Preconditioned Steepest Descent [71] or more systematically PIN-
VIT(2) within the classification given in Section 1.2.

Non-asymptotic convergence estimates for PINVIT(2) are unknown so far in spite of long-
standing efforts, cf. [71, 73]. The idea of preconditioned steepest descent/ascent methods is
discussed in Kantorovich [65, 66]. An asymptotically sharpestimate (sharp for�(x0) tending
to �

1

) was given by Samokish; cf. Equation (10) in [119]. See also Godunov, Ogneva and
Prokopov [46], Knyazev [69], estimates (3.9)–(3.12), as well as the monograph of D’yakonov
[32, Sections 9.4.1 and 9.4.4] containing additional references to the literature. Recently, the
method of successive eigenvalue relaxation has been presented by Ovtchinnikov and Xan-
this [105, 106], a scheme which relies on consecutive relaxation steps in the directions of the
preconditioned residuals belonging to the Ritz vectors of the actual approximating subspace.

Here, we prefer an alternative but equivalent representation of (6.1) and (6.2) based on the
Rayleigh-Ritz procedure applied to the 2D column space ofV = [x; d℄. In order to find the
minimal Rayleigh quotient inspanfx; dg one has to solve the2 � 2 generalized eigenvalue
problem

�

AU =

�

MU�; � = diag(�

1

; �

2

);

with

�

A = V

T

AV =

�

(x;Ax) (d; Ax)

(d; Ax) (d; Ad)

�

(6.3)

and

�

M = V

T

V =

�

(x; x) (d; x)

(d; x) (d; d)

�

: (6.4)
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The smaller Ritz value�
1

equals�(x0) and reads

�

1

=

�

2 det(M)

�

s

�

2

4(det(M))

2

�

det(A)

det(M)

;

for
� = (x;Ax)(d; d) + (x; x)(d; Ad)� 2(d; Ax)(d; x):

The discriminant is positive since the Ritz values are real numbers larger than�
1

. Denote byv
the eigenvector of( �A; �M) belonging to�

1

. Thenx0 is collinear toV v = xv

1

+dv

2

. Obviously,
!

� equals the ratio of the components ofv,

!

�

=

v

2

v

1

; (6.5)

as long asv
1

6= 0. But the denominator of (6.5) may vanish if the preconditioned residuald is
a collinear vector to the eigenvectorx

1

. We get rid of this singularity later in Lemma 6.15 by
scaling the iteratex instead of the preconditioned residual. Note that the numerator of (6.5)
is nonzero as long asx is different from an eigenvector ofA; otherwise our preconditioned
eigensolvers would be stationary and their application would make no sense.

Before we start analyzing the convergence of PINVIT(2), letus treat the question of
whether or not such an attempt is worthwhile. Can we expect improved convergence esti-
mates for PINVIT(2) concerning the poorest convergence compared to that of PINVIT(1)? A
simple argument reveals a positive answer, at least concerning the bounds for the Rayleigh
quotient of that type presented in Theorem 2.8. First one should observe that�

1

� �(x� 1d)

so that PINVIT(2) does not converge more slowly than PINVIT(1). The second and decisive
argument is that the poorest convergence of PINVIT(1), in the domain[�

i

; �

i+1

℄ of Rayleigh
quotients, is known to be taken in the 2D spaceS

i;i+1

= spanfx

i

; x

i+1

g as shown in [96].
Therein,x

i

andx
i+1

are the eigenvectors belonging to�
i

and�
i+1

. But PINVIT(2) behaves
very differently in the same spaceS

i;i+1

. If the actual iterate and its preconditioned residual
are both contained inS

i;i+1

, PINVIT(2), by the Courant-Fischer principles, convergesimme-
diately to the eigenpair(x

i

; �

i

), which means a considerable acceleration of convergence.
Keeping this simple result in mind, we will not be surprised by Theorem 6.3 and Con-

jecture 6.16 claiming that poorest INVIT(2) as well as PINVIT(2) convergence is taken in
spanfx

i

; x

i+1

; x

n

g, i.e. the 3D space spanned byS
i;i+1

andx
n

. The dependence on the eigen-
pair (x

n

; �

n

) may at a first glance appear disadvantageous, as�

n

is usually extremely large
for mesh discretizations. But this dependence must be a veryweak one, since even the slower
convergent PINVIT(1) scheme is known to be equipped with grid-independent convergence
estimates.

Finally, let us mention that the�
p;q

factors for (P)INVIT(2) reflect some acceleration in
comparison to those of (P)INVIT(1), too, as we will see in thefollowing.
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6.1.1 Steepest descent for the eigenproblem

In preparation of a convergence analysis for INVIT(2) let usthrow a glance at thesteepest
descentfor the eigenproblem. For given nonzerox 2 R

n having the Rayleigh quotient�, the
idea of steepest descent is to correctx in the direction of the negative gradient of the Rayleigh
quotient, i.e.

x �! x

0

:= x� !(Ax� �x); (6.6)

with ! minimizing the Rayleigh quotient ofx0. We make use of the fact that the residual
Ax� �x and the gradient of�(�) are collinear vectors. Obviously, for a nonvanishing residual
(6.6) succeeds in decreasing the Rayleigh quotient and the sequence of Rayleigh quotients
(slowly) converges to some eigenvalue, while the vector-iterates tend to an eigenvector.

Steepest ascentfor the eigenproblem, a technique for the computation of thelargest eigen-
value together with an eigenvector, derives from (6.6) by choosing! in such a way that the
Rayleigh quotient ofx0 is maximized. The classical asymptotic estimates of the convergence
rate of steepest descent/ascent go back to Kantorovich [65,66] as well as to Hestenes and
Karush [58]. Non-asymptotic estimates are given by Prikazchikov [111], Zhuk and Bon-
darenko [150] as well as by Knyazev and Skorokhodov [69, 76].

As has already been pointed out in Section 1.2,steepest descentandpreconditioned steep-
est descent, here called PINVIT(2), are only weakly related. Only ifno preconditioning is
applied, i.e.B = I, PINVIT(2) will reduce to steepest descent for the Rayleighquotient. We
lay special emphasis on noting that the choiceB = I is way out from the usual assumption
(2.2) on the quality of the preconditioner. Just note that for B = I the spectral radius of the
error propagation matrixkI � Ak

A

behaves asymptotically like the largest eigenvalue ofA.

But there is a remarkable, much stronger relation brought about for the choiceB�1 = A

�1

of exact preconditioning or = 0, cf. Section 1.2. While PINVIT(1) forB = A equals
INVIT(1), the scheme PINVIT(2) forB = A, in contrast to (6.6), results in INVIT(2), i.e.

(x; �) �! (x

0

= x� !(x� �A

�1

x); �

0

= �(x

0

));

where! minimizes the Rayleigh quotient ofx0. Naturally, we prefer to rewrite this as

(x; �) �! (x

0

= x� !A

�1

x; �

0

= �(x

0

)); (6.7)

with, once more,! minimizing the Rayleigh quotient ofx0.
In other words, preconditioned steepest descent for a decreasing improves to approxi-

mate INVIT(2), providing the justification to refer to (6.1)and (6.2) as PINVIT(2).

Nevertheless, the convergence analysis of the steepestascentmethod as given by Knyazev
and Skorokhodov [76] can be successfully extended to a convergence theory of INVIT(2). This
is done in Section 6.2, yielding asymptotically sharp convergence estimates in terms of the
�

p;q

factors and for the acute angle enclosed with the eigenvector to the smallest eigenvalue.
Before doing this, the result of Knyazev and Skorokhodov [76] is reformulated in Corollary 6.1
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for the steepest descent method (6.6). The proof of this reformulation is trivial; just substitute
A by�A in Theorem 2.2 in [76].

Corollary 6.1 (Convergence of steepest descent).If �(x) < �

2

then for thex0 by (6.6) we
have

�

1;2

(�

0

)

�

1;2

(�)

�

�

1� �

1 + �

�

2

; (6.8)

where

�

1;2

(�) =

�� �

1

�

2

� �

(6.9)

and
� = (�

2

� �

1

)=(�

n

� �

1

): (6.10)

Moreover, for any initial vectorx(0) with tan'

0

<1 one has

tan

2

'

k

tan

2

'

0

� (1� �)

2k

; (6.11)

where'
k

denotes the acute angle betweenx

(k) andx
1

. The estimates are asymptotically sharp
for some sequence of vectors with a Rayleigh quotient tending to�

1

.

Remark 6.2. The estimate (6.8) together with (6.10) proves steepest descent unsuitable for
matrices with large�

n

, e.g. for mesh eigenproblems, sincelim

�

n

!1

� = 0 implies that the
convergence factor on the right-hand side of (6.8) tends to 1.

Contrastingly, the convergence factor of INVIT(2) is bounded away from 1 for�
n

! 1, see
Theorem 6.3.

6.2 Convergence analysis of INVIT(2)

As the first step toward a convergence analysis of PINVIT(2) we analyze the case of exact
preconditioning, i.e. convergence estimates are derived for INVIT(2) as given by (6.7).

Theorem 6.3.Letx(0) 2 R

n and

� =

�

2

� �

1

�

2

�

�

1

�

2

�

n

: (6.12)

If �
1

� �(x

(0)

) < �

2

, then for thekth iteratex(k) of INVIT(2) (6.7) it holds that

�

1;2

(�(x

(k)

))

�

1;2

(�(x

(0)

))

�

�

1� �

1 + �

�

2k

; for k = 1; 2; : : : (6.13)

This estimate is sharp in�
1

, �
2

and�
n

. It is asymptotically sharp in� and turns into a sharp
estimate as�! �

1

.
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Moreover, for anyx(0) with tan'

0

<1 one has

tan

2

'

k

tan

2

'

0

� (1� �)

2k

; (6.14)

where'
k

is the acute angle enclosed byx(k) andx
1

.

Remark 6.4. Formally, we obtain Equation (6.12) from (6.10) by replacing �
i

by 1=�

i

for
i = 1; 2; n. Therefore, one might believe that INVIT(2) could be understood as steepest descent
for A�1. But this is in fact not true, since in both cases the Rayleigh-Ritz approximations are
computed with respect toA. In contrast to that, a complete substitution ofA byA�1 would
lead to the so-called harmonic Ritz values/vectors, but Theorem 6.3 is formulated in terms of
the standard Ritz approximations. Nevertheless, the proofof Theorem 6.3 tightly follows the
ideas of Knyazev and Skorokhodov [76], but at various pointsalterations take effect which
result from havingA�1 as the “iteration operator” and from computing the Rayleigh-Ritz
approximations with respect toA.

Remark 6.5. Since� by Equation (6.12) is a decreasing function in�
n

(�
n

> �

2

) and (1 �
�)=(1 + �) decreases in� 2 [1� �

1

=�

2

; 1), we obtain a simplified convergence factor~� by

~� := lim

�

n

!1

1� �

1 + �

=

�

1

�

2

+ (�

2

� �

1

)

>

1� �

1 + �

; (6.15)

which holds globally for INVIT(2). Compare with Remark 6.2 to see that~� in contrast to the
convergence factor of INVIT(2) is bounded away from 1 for�

n

! 1. We do not lose much
quality of this bound by taking the limit�

n

! 1 whenever�
n

� �

2

(which is usually the
case for mesh eigenproblems of elliptic partial differential operators). For instance taking the
discrete Laplacian�

h

we have�
n

� h

�2 so that� = 1� �

1

=�

2

+O(h

2

).
The comparison with the convergence factor�

1

=�

2

of the standard INVIT(1), see Corollary
1.10, points out the impact of INVIT(2), which consists in the additional summand�

2

� �

1

hastening convergence.

Remark 6.6. It is easy to generalize Theorem 6.3 to the case that�(x) 2 [�

i

; �

i+1

) for i =
1; : : : ; n� 2. Then for the new INVIT(2) iteratex0 it holds either�(x0) < �

i

or

�

i;i+1

(�(x

0

))

�

i;i+1

(�(x))

�

�

1� �

1 + �

�

2

(6.16)

with

� =

�

i+1

� �

i

�

i+1

�

�

i

�

i+1

�

n

: (6.17)

This estimate is sharp in�
i

, �
i+1

and�
n

. It is asymptotically sharp in� and turns into a sharp
estimate as� ! �

i

. In the remaining interval[�
n�1

; �

n

) the estimate�(x0) � �

n�1

is sharp
by Lemma 6.12.
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�
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Æ

�

Figure 6.1: Comparison of INVIT(1) and INVIT(2) convergence estimates. Dotted lines:
�

2

[INV IT (1)℄. Bold solid lines:�2[INV IT (2)℄. Solid curvesÆ := �

i;i+1

(�

0

)=�

i;i+1

(�).

These estimates are illustrated by using the same example asin Figure 1.2, see the model
analysis of INVIT(1) in Section 1.4. For the sake of comparison, Figure 6.1 shows the conver-
gence factors�2

i;i+1

of INVIT(1) as dotted lines while the corresponding factorsof INVIT(2)
are drawn as bold solid lines which reflect the fact that INVIT(2) converges much more rapidly.
Finally, the left-hand side of 6.16, i.e.

Æ := �

i;i+1

(�

0

)=�

i;i+1

(�)

are plotted in the intervals[�
i

; �

i+1

), i = 1; : : : ; n� 2, as solid curves illustrating the asymp-
totic sharpness of (6.16) as�! �

i

. See Sections 6.5 and 6.5.3 on how to computeÆ.

Let us start with the convergence analysis of INVIT(2): Since � is independent ofk it
suffices to give the proof only forn = 1. We start with some introductory definitions and
define the two subspaces

K

[�1℄

= spanfx;A

�1

xg; H

[�3℄

= spanfx

1

; x; A

�1

xg;

wherex
1

denotes the eigenvector to the smallest eigenvalue�

1

. The proof is based on a mini-
dimensional analysis (a concept introduced in [76]) where the convergence estimates derived
in H [�3℄ turn out to hold in the general case. We exclude the trivial casedimK

[�1℄

= 1 (just
observe that this would mean stationarity of inverse iteration andx would be an eigenvector)
as well asdimH

[�3℄

= 2 since thenx
1

2 K

[�1℄ andx0 = x

1

. The estimates (6.13) and (6.14)
would hold trivially in these cases. Next we introduce the orthogonal projectorP [�3℄ onH [�3℄

and define
A

[3℄

:= P

[�3℄

A; A

[�3℄

:= P

[�3℄

A

�1

:

ThenA[3℄ andA[�3℄ are symmetric operators onH [�3℄ havingH [�3℄ as an invariant subspace.
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Lemma 6.7. Let

x

0

= x� !A

�1

x; ! minimizing
(x

0

; Ax

0

)

(x

0

; x

0

)

;

~x = x� !A

[�3℄

x; ! minimizing
(~x;A

[3℄

~x)

(~x; ~x)

:

Thenx0 = ~x so that we can analyze INVIT(2) in the 3D subspaceH

[�3℄.

Proof. First observe that both methods span the same subspace, i.e.K

[�1℄

= spanfx;A

[�3℄

xg.
Furthermore, the Rayleigh quotients�

A

(�) and�
A

[3℄

(�) coincide onH [�3℄ since fory 2 H

[�3℄

it holds
(y; Ay) = (y; P

[�3℄

Ay) = (y; A

[3℄

y):

We conclude that both methods will find the same Ritz vector contained inH [�3℄.

Let �
1

� �

2

� �

3

be the Ritz values ofA with respect to the spaceH [�3℄ and denote
by v

i

the corresponding orthonormal Ritz vectors. Sincex

1

2 H

[�3℄ we have�
1

= �

1

and
v

1

= x

1

. Then thev
i

are the eigenvectors and the�
i

are the eigenvalues ofA[3℄. Moreover, by
the assumption�

1

< �

2

together with the Courant-Fischer theorem we have

�

1

= �

1

< �

2

� �

2

� �

3

� �

n

: (6.18)

To show that�
2

= �

3

embodies a trivial case, representx (which is at present assumed not to
be an eigenvector ofA) in the form

x = �x

1

+ �v; for somev 2 spanfv

2

; v

3

g:

Because ofdimH

[�3℄

= 3 we have� 6= 0. If �
2

= �

3

, thenv would be an eigenvector ofA[3℄

so that� 6= 0. HenceK [�1℄

= spanfx

1

; vg and (6.13) holds trivially sinceK [�1℄

= H

[�3℄ and
dimH

[�3℄

= 2. In the following we suppose�
2

< �

3

.
Next we give the justification that it suffices to prove only the counterpart of the conver-

gence estimate (6.13) inH [�3℄. Therefore let

� =

�

1

(�

3

� �

2

)

�

2

(�

3

� �

1

)

(6.19)

and

�

[�3℄

1;2

(�

0

) =

�

0

� �

1

�

2

� �

0

; �

[�3℄

1;2

(�) =

�� �

1

�

2

� �

: (6.20)

We will show in the following

�

1;2

(�

0

)

�

1;2

(�)

�

�

[�3℄

1;2

(�

0

)

�

[�3℄

1;2

(�)

�

�

2

(2� �)

2

�

�

1� �

1 + �

�

2

: (6.21)
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The far left inequality follows from�
1

= �

1

and

�

2

� �

�

2

� �

0

�

�

2

� �

�

2

� �

0

;

whereas the far right inequality is a consequence of� � 1 � �. This last inequality follows
from (6.18) resulting in

� =

�

1

(�

3

� �

2

)

�

2

(�

3

� �

1

)

�

�

1

(�

3

� �

2

)

�

2

(�

3

� �

1

)

�

�

1

(�

n

� �

2

)

�

2

(�

n

� �

1

)

= 1� �:

We infer that the “mini-dimensional”’ estimate

�

[�3℄

1;2

(�

0

)

�

[�3℄

1;2

(�)

�

�

2

(2� �)

2

is not weaker than the corresponding estimate in theR

n . The remaining part of the analysis is
restricted toH [�3℄.

We denote by~�
1

, ~�
2

the Ritz values ofK [�1℄ in H [�3℄. (By Lemma 6.7 they agree with the
Ritz values inRn .) SinceK [�1℄

� H

[�3℄ it holds

�

1

�

~

�

1

� �

2

�

~

�

2

� �

3

:

Next we show that the only nontrivial case is

�

1

<

~

�

1

< �

2

<

~

�

2

< �

3

:

Lemma 6.8. Letx be expanded in the Ritz vectorsv
i

x =

3

X

i=1

a

i

v

i

:

Even if one~�
i

equals some�
j

(j = 1; 2; 3), thena
1

a

2

a

3

= 0 and the convergence estimates
(6.13), (6.14) hold trivially.

Proof. For the Ritz values~�
1

and~�
2

it holds

det

�

m

1

�

~

�m

0

m

0

�

~

�m

�1

m

0

�

~

�m

�1

m

�1

�

~

�m

�2

�

=

~

�

2

q

2

+

~

�q

1

+ q

0

= 0

with m

l

= (x; (A

[3℄

)

l

x) =

P

3

i=1

�

l

i

a

2

i

. We obtain the coefficientsq
i

in their symmetrized
form (write downq

i

by its definition and add the same term with interchanged indexes of
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summation)

q

2

=

1

2

3

X

i;j=1

(�

�1

i

� �

�1

j

)

2

a

2

i

a

2

j

;

q

1

=

1

2

3

X

i;j=1

�(�

i

+ �

j

)(�

�1

i

� �

�1

j

)

2

a

2

i

a

2

j

;

q

0

=

1

2

3

X

i;j=1

�

i

�

j

(�

�1

i

� �

�1

j

)

2

a

2

i

a

2

j

:

This results in

~

�

1

+

~

�

2

=

P

3

i;j=1

(�

i

+ �

j

)(�

�1

i

� �

�1

j

)

2

a

2

i

a

2

j

P

3

i;j=1

(�

�1

i

� �

�1

j

)

2

a

2

i

a

2

j

(6.22)

~

�

1

~

�

2

=

P

3

i;j=1

�

i

�

j

(�

�1

i

� �

�1

j

)

2

a

2

i

a

2

j

P

3

i;j=1

(�

�1

i

� �

�1

j

)

2

a

2

i

a

2

j

(6.23)

Let us first assume~�
2

= �

3

. Eliminating~�
1

from (6.22) and (6.23) results in

q

2

�

2

3

+ q

1

�

3

+ q

0

q

2

�

3

= 0;

which implies
3

X

i;j=1

�

�

3

(�

i

+ �

j

)� �

2

3

� �

i

�

j

	

(�

�1

i

� �

�1

j

)

2

a

2

i

a

2

j

= 0:

Only a
1

a

2

has a nonvanishing coefficient so thata

1

a

2

= 0. In a similar way we show that
~

�

2

= �

2

impliesa
1

a

3

= 0. Finally, ~�
1

= �

1

(~�
1

= �

2

) impliesa
2

a

3

= 0 (a
1

a

3

= 0).
Assuminga

1

a

2

a

3

= 0 always meansa
2

a

3

= 0 sincea
1

= 0 is excluded by the assumption
�(x) < �

2

. If a
2

a

3

= 0 thenx 2 spanfx

1

; v

2

g or x 2 spanfx

1

; v

3

g. In either casex0 = x

1

or
�

0

= �

1

.

Proof of Theorem 6.3.Now we consider the nontrivial case

�

1

<

~

�

1

< �

2

<

~

�

2

< �

3

and representx in the form
x = x

1

+ �

0

v

2

+ �

0

v

3

; (6.24)

where, for convenience,x is normalized in a way that the coefficient ofx
1

equals1. By
expanding the Rayleigh quotient as a function of�

0

and�
0

we obtain

�

[�3℄

1;2

(�) =

�

2

0

(�

2

� �

1

) + �

2

0

(�

3

� �

1

)

�

2

� �

1

� �

2

0

(�

3

� �

2

)

(6.25)
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and�[�3℄

1;2

(�

0

) = (

~

�

1

� �

1

)=(�

2

�

~

�

1

). In order to express�
0

and�
0

in terms of�
i

, ~�
i

let
 2 H

[�3℄ be a vector orthogonal toK [�1℄ with  =
P

3

i=1



i

v

i

, kk = 1. First we represent
as a function ofx

 =

(A�

~

�

1

I)(A�

~

�

2

I)A

�1

x

k(A�

~

�

1

I)(A�

~

�

2

I)A

�1

xk

:

The last equation is established by settingA

�1

x = y and recognizing that(A� ~

�

1

I)(A�

~

�

2

I)y

is a vector perpendicular to the Krylov spaceK2

= spanfy; Ayg, see Lemma 12.3.1 in [107].
Additionally, we have a representation of depending onx0

 =

(A�

~

�

1

I)x

0

k(A�

~

�

1

I)x

0

k

;

since the residual of the Ritz vectorx0 is orthogonal toK [�1℄. As a third condition it holds for
the components of



2

i

=

Q

2

j=1

(

~

�

j

� �

j

)

Q

3

j=1;j 6=i

(�

j

� �

j

)

;

see Section 12.6.2 in [48]. A rather wearisome calculation leads to the longish formula

�

2

0

=

(

~

�

1

� �

1

)(

~

�

2

� �

1

)(�

3

� �

1

)�

2

2

(�

2

�

~

�

1

)(

~

�

2

� �

2

)(�

3

� �

2

)�

2

1

; �

2

0

=

(

~

�

1

� �

1

)(

~

�

2

� �

1

)(�

2

� �

1

)�

2

3

(�

3

�

~

�

1

)(�

3

�

~

�

2

)(�

3

� �

2

)�

2

1

;

�

2

1

=

(

~

�

1

� �

1

)(

~

�

2

� �

2

)(�

3

� �

1

)

(�

2

�

~

�

1

)(

~

�

2

� �

1

)(�

3

� �

2

)

; �

2

1

=

(

~

�

1

� �

1

)(�

3

�

~

�

2

)(�

2

� �

1

)

(�

3

�

~

�

1

)(

~

�

2

� �

1

)(�

3

� �

2

)

:

The following notation turns out as useful

�

1

=

�

1

(�

3

�

~

�

1

)

�

2

(�

3

� �

1

)

2 (�;

�

1

�

2

); �

2

=

�

1

(�

3

�

~

�

2

)

�

2

(�

3

� �

1

)

2 (0; �); (6.26)

where� = �

1

(�

3

� �

2

)=(�

2

(�

3

� �

1

)). Recasting of�2

0

, �2

0

, �2

1

and�2

1

yields

�

2

0

=

(

�

1

�

2

� �

1

)(

�

1

�

2

� �

2

)�

2

�(�

1

� �)(�� �

2

)�

1

; �

2

0

=

(

�

1

�

2

� �)(

�

1

�

2

� �

1

)(

�

1

�

2

� �

2

)�

2

3

��

1

�

2

�

2

1

; (6.27)

�

2

1

=

�

1

(

�

1

�

2

� �

1

)(�� �

2

)

�

2

�(�

1

� �)(

�

1

�

2

� �

2

)

; �

2

1

=

(

�

1

�

2

� �)(

�

1

�

2

� �

1

)�

2

��

1

(

�

1

�

2

� �

2

)

: (6.28)

We collect the results to represent

�

[�3℄

1;2

(�

0

)

�

[�3℄

1;2

(�)

=

~

�

1

� �

1

�

2

�

~

�

1

�

�

2

� �

1

�

3

� �

1

� �

2

0

(�

3

� �

2

)�

1

(�

3

� �

1

)�

2

�

2

� �

1

�

3

� �

1

�

2

0

+ �

2

0

:
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In order to eliminate~�
1

, ~�
2

and�
3

check that

�

2

� �

1

�

3

� �

1

= 1�

�

2

�

1

�;

~

�

1

� �

1

�

3

� �

1

= 1�

�

2

�

1

�

1

;

�

2

�

~

�

1

�

3

� �

1

=

�

2

�

1

(�

1

� �);

so that
�

[�3℄

1;2

(�

0

)

�

[�3℄

1;2

(�)

=

�

1

�

2

� �

1

�

1

� �

�

�

1

�

2

� �� �

2

0

�

�

�

1

�

2

� �

�

�

2

0

+

�

1

�

2

�

2

0

:

Inserting (6.27) together with! = �

1

=�

2

results in

�

[�3℄

1;2

(�

0

)

�

[�3℄

1;2

(�)

=

�(�� �

2

)

(! � �

2

)

�

�

1

�

2

� (! � �

1

)(! � �

2

)�

2

3

�

�2

1

!

�1

�

1

�

2

+ !�

2

3

�

�2

1

(�

1

� �)(�� �

2

)

=: h(�

1

; �

2

):

Sinceh(�; �
2

) in a monotone increasing function in�
1

2 (�; !) we find the reduced represen-
tation

sup

�

1

2(�;!)

h(�

1

; �

2

) = h(!; �

2

) =

�(�� �

2

)

! � �

2

�

!�

2

�

2

+ !

2

�

2

3

(�

2

��

1

)

�

2

1

(�

3

��

1

)

(�� �

2

)

=: g(�

2

):

The maximum ofg(�
2

) is taken in

�

�

2

= ��!

1� �

2

=�

3

!(�� 1) + �

with

� =

�

2

3

(�

2

� �

1

)

�

2

2

(�

3

� �

1

)

:

The proof of (6.21) is completed by tedious simplifications leading to

g(�

�

2

) =

�

�

2� �

�

2

:

In order to show (6.14), first check that under the assumptionkx

1

k = 1 together with
(6.24) it holds

tan

2

'

0

=

1� ((x; x

1

)=kxk)

2

((x; x

1

)=kxk)

2

= �

2

0

+ �

2

0

:

To express(tan2 '
1

)=(tan

2

'

0

) in terms of�
i

we plug in (6.26) and find

tan

2

'

1

tan

2

'

0

=

�

2

1

+ �

2

1

�

2

0

+ �

2

0

=

(�� �

2

)�

2

1

�

2

(

�

1

�

2

� �

2

)

2

�

2

�

�

1

�

1

(�� �

2

) + �

2

�

2

(

�

1

�

2

� �)(�

1

� �)

�

1

�

2

�

1

�

2

+ �

2

3

(

�

1

�

2

� �)(�

1

� �)(�� �

2

)

=: g(�

1

; �

2

):
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Partial differentiation ofg(�
1

; �

2

) with respect to�
1

shows that

sgn

�

�g

��

1

�

= sgn

�

�

2

(1 +

�

2

�

3

)� �

�

:

We first scrutinize the case of a monotone decreasingg(�

1

; �

2

) for �
1

2 (�;

�

1

�

2

) and0 < �

2

�

�

1+�

2

=�

3

. Then

sup

�

1

2(�;

�

1

�

2

)

g(�

1

; �

2

) = g(�; �

2

) =

(�� �

2

)

2

�

2

1

(�

1

� �

2

�

2

)

2

=: h(�

2

):

Since

�

��

2

h(�

2

) =

2�

2

1

(�

2

� �)(

�

1

�

2

� �)

�

2

2

�

�

1

�

2

� �

2

�

3

< 0;

one is led to

sup

�

2

2(0;

�

1+�

2

=�

3

)

h(�

2

) = h(0) = �

2

:

In the second case�=(1 + �

2

=�

3

) � �

2

� � it holds

sup

�

1

2(�;

�

1

�

2

)

g(�

1

; �

2

) = g(

�

1

�

2

; �

2

) =

(�� �

2

)�

2

1

�

2

(

�

1

�

2

� �

2

)

2

�

2

�

�

2

1

(�� �

2

) + �

2

�

2

2

�

�

1

�

2

� �

�

2

�

2

1

�

2

+ �

2

3

(�� �

2

)

�

�

1

�

2

� �

�

2

< �

2

;

where the last inequality results from strenuous direct calculations. 2

The proof of the following corollary can be done by transferring the arguments of Knyazev
and Skorokhodov [76] to the actual setup. We note that the estimate (6.14) is only attained
asymptotically for�

n

! 1. (Similarly, the correct form of Equation (2.4) in [76] has to be
equipped with an additional limit�

1

!1.)

Corollary 6.9. The estimate (6.13) is asymptotically sharp in the sense that

lim

�!0

sup

℄(x;x

1

)��

�

1;2

(�(x

(k)

))

�

1;2

(�(x

(0)

))

=

�

1� �

1 + �

�

2k

:

Furthermore, it holds

lim

�

n

!1

sup

x

(k)

6=0

tan

2

'

k+1

tan

2

'

k

= (1� �)

2

:
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6.3 PINVIT(2) convergence theory

Our convergence analysis of PINVIT(2) consists of the following steps: In Section 6.3.1 some
elementary results on the fastest/poorest convergence arecollected. Then the-basis formula-
tion of PINVIT(2) is introduced in Section 6.3.2, setting upthe appropriate geometry as de-
scribed in Section 6.3.3. Finally, in Section 6.3.4 a conjecture on the 3D subspace of poorest
convergence is given, which paves the way for the mini-dimensional analysis in the subsequent
Section 6.4. Finally, Section 6.5 reports on the results of several numerical experiments sup-
porting the validity of the conjecture on poorest convergence in a low dimensional invariant
subspace.

6.3.1 Elementary results on extremal convergence

Let us collect some results on the fastest convergence of PINVIT(2) as well as its poorest
convergence in the domain of Rayleigh quotients[�

n�1

; �

n

℄. Fortunately, the best possible
convergence of PINVIT(2) is considerably easier to analyzethan that of PINVIT(1). Lemma
6.10 reveals that for any� 2 [�

1

; �

n

) some vectorx in the level set

L(�) = fx 2 R : �(x) = �g (6.29)

together with a preconditioner can be specified, in such a waythat PINVIT(2) applied to
x terminates immediately within the smallest eigenpair(�

1

; x

1

). The comparison with the
results on fastest PINVIT(1) convergence, as gained in Chapter 3, highlights this superior
convergence property of PINVIT(2). Furthermore, the fastest convergence of PINVIT(2) does
not depend on, in contrast to PINVIT, which may converge faster for increasing.

Lemma 6.10 (Fastest convergence of PINVIT(2)).Let� 2 [�

1

; �

n

). Then

�

1

= min

x2L(�)

min

B

�1

2B



min

!2R

�(x� !B

�1

(Ax� �x));

withL(�) defined by (6.29) and where the setB



, see (2.3), contains all admissible precondi-
tioners for some 2 [0; 1).

Proof. Definex 2 spanfx

1

; x

n

g by

x =

 

�

�

n

� �

�

n

� �

1

�

1=2

; 0; � � � ; 0;

�

�� �

1

�

n

� �

1

�

1=2

!

; (6.30)

so thatx 2 L(�). Since for any 2 [0; 1) the center�A�1x is contained inE


(x), the smallest
Ritz value with respect to

spanfx; �A

�1

xg = spanfx

1

; x

n

g

is given by�
1

.
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Lemma 6.10 indicates that the vector of poorest convergenceof PINVIT(2), aside from
� 2 (�

n

; �

n�1

), is spanned by at least three eigenvectors. Therefore, letZ

i;j

2 B



be an
operator havingspanfx

i

; x

j

g as an invariant subspace. With this choice we cover the case
of exact preconditioning, i.e.Z

i;j

= A

�1, as well as all preconditioners responsible for the
poorest convergence of PINVIT(1) inspanfx

i

; x

j

g for j = i+ 1.

Corollary 6.11 (Subspace of poorest convergence).Let� 2 [�

1

; �

n�1

), � 6= �

i

and let

x

�

2 arg max

x2L(�)

min

!2R

�(x� !Z

i;j

(Ax� �x)): (6.31)

Thenx� 62 spanfx

i

; x

j

g for any1 � i; j � n.

Proof. Assumex 2 spanfx

i

; x

j

g with i < j. Then bothAx � �x andZ
i;j

(Ax � �x) are
contained inspanfx

i

; x

j

g. Consequently, PINVIT(2) would immediately terminate in the
eigenpair(x

i

; �

i

). It is easy but wearisome to construct examples inL(�) so that for exact
preconditioning withA�1 2 B

0

� B



it holds that

�

i

< max

x2L(�)

min

!2R

�(x

0

(!)):

We conclude from Corollary 6.11 that poorest convergence ofINVIT(2) is taken at least
in a 3D space as has also been suggested by Theorem 6.3. Note that Theorem 6.3 does not
provide a proof of this 3D property since the bound (6.13) is only attainable for� ! �

1

. For
PINVIT(2) Corollary 6.11 has two possible consequences: either poorest convergence is at
least taken in a 3D space, or the preconditioner responsiblefor the poorest convergence does
not havespanfx

i

; x

j

g as an invariant subspace.

Poorest convergence of PINVIT(2) in the domain[�

n�1

; �

n

) is treated in Lemma 6.12 by
using the Courant-Fischer theorem.

Lemma 6.12 (Poorest convergence for� � �

n�1

). Let � 2 [�

n�1

; �

n

) andx� be the vector
of poorest PINVIT(2) convergence w.r.t.L(�) andB



. Thenx� 2 spanfx

n�1

; x

n

g and

�

n�1

= max

x2L(�)

max

B

�1

2B



min

!2R

�(x� !B

�1

(Ax� �)x):

Proof. Let �
1

� �

2

be the Ritz values defined byspanfx;B�1(Ax � �x)g. By the Courant-
Fischer criteria it holds that�

1

� �

n�1

. The last inequality is attained forx 2 spanfx

n�1

; x

n

g

andB = A.

Let us summarize that the fastest convergence of PINVIT(2) is taken in 2D invariant sub-
spaces ofAwhile its poorest convergence (at least for = 0) is attained in at least 3D invariant
subspaces. This should be seen in contrast to PINVIT(1), forwhich the best and poorest con-
vergence are both taken in (differing) 2D invariant subspaces.
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6.3.2 The-basis representation

For the remaining part of this chapter we prefer to analyze PINVIT(2) within the -basis
which expresses the underlying geometry in an advantageousway and which has already been
approved as a valuable tool for the analysis of PINVIT(1). Wefirst recall the normal form of
our symmetric positive definite preconditioners

B

�1

= A

�1

+ A

�1=2

^

V D

^

V

T

A

�1=2

;

cf. Equation (2.8), for arbitrary orthogonal matrices^V and diagonal matricesD with d

ii

2

[�; ℄ so that the spectral radius ofI � B

�1

A is bounded by. By inserting these precon-
ditioners into PINVIT(2) and applying the-basis transformation (2.17) one obtains for the
search subspace

V = [x;B

�1

(Ax� �x)℄

= [X�

�1=2

;X(X

T

A

�1

+X

T

A

�1=2

X(X

T

^

V )D(X

T

^

V )

T

X

T

A

�1=2

)(A� �I)X�

�1=2

℄

= A

�1=2

X [; (I + UDU

T

)(� ��

�1=2

)℄;

with the orthogonal matrixU = X

T

^

V . Then PINVIT(2) reads



0

= � !(I + UDU

T

)(� ��

�1

); (6.32)

where! is computed so that the Rayleigh quotient(

0

; 

0

)=(

0

;�

�1



0

) is minimized. In terms
of the-basis (6.3) and (6.4) read

�

A = [; (I + UDU

T

)(� ��

�1=2

)℄

T

[; (I + UDU

T

)(� ��

�1=2

)℄; (6.33)
�

M = [; (I + UDU

T

)(� ��

�1=2

)℄

T

�

�1

[; (I + UDU

T

)(� ��

�1=2

)℄: (6.34)

In order to show that the convergence analysis can be restricted to nonnegative vectors
let us introduce the sign-changing operator

P = diag(�

1

; : : : ; �

n

); �

i

2 f1;�1g:

One benefit of our geometrical description of PINVIT(2) comes to light in Lemma 6.13. While
it is complicated to understand how PINVIT(2) behaves for afixed preconditioner as is
replaced byP, its effect onE



() andE


(P) can be understood by elementary geometric
arguments. Lemma 6.13 reveals that such a replacement has noeffect on the set of Rayleigh
quotients that can be attained by PINVIT(2).

Lemma 6.13.For given nonzero and 2 [0; 1) let �() be the set of PINVIT(2)-attainable
Rayleigh quotients for all admissible preconditioners

�() = f�(

0

) by Equation (6.32): D with jd
ii

j � ; orthogonalU 2 R

n�n

g:

Then
�() = �(P):
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c

ϕ

γF

Eγ

.

γS
T.

β
δ

α

Figure 6.2:Cross section alongspanf; ���1g throughE


(), the coneF


andS


.

Proof. As shown in Section 2.2, changing the sign of theith component of acts like a reflec-
tion ofE



() through the hyperplanespanfe
1

; : : : ; e

i�1

; e

i+1

; : : : ; e

n

g so that

PE



() = E



(P):

For anyy 2 E


() we have

�

0

= min

!

�(y + !) = min

!

(y; y) + 2!(y; ) + !

2

(; )

(y;�

�1

y) + 2!(y;�

�1

) + !

2

(;�

�1

)

=

(Py; Py) + 2!(Py; P) + !

2

(P; P)

(Py;�

�1

Py) + 2!(Py;�

�1

P) + !

2

(P;�

�1

P)

= min

!

�(Py + !P);

since(; y) =
P

n

i=1

�

2

i



i

y

i

= (P; Py). We infer that inspanfy; g andspanfPy; Pg the
same extremal Rayleigh quotients, or Ritz values, are taken.

6.3.3 A geometric representation

In order to work out a geometric picture of PINVIT(2) let us consider the scheme



0

(!) = � !(I + UDU

T

)(� ��

�1

) (6.35)

for all ! 2 R. Figure 6.2 inspanf; ���1g displays the setE


() of admissible vectors
thrown out by PINVIT for a fixed 2 [0; 1) as well as the (dashed) cone

F



() = f

0

(!) : ! 2 R; orthogonalU 2 R

n�n

; jd

ii

j 2 [0; ℄g:
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F



() is the smallest circular cone containingE


() and having its vertex in. In other words,
F



() includes all the lines � !y, ! 2 R, wherey = (I + UDU

T

)( � ��

�1

) is some
search direction. PINVIT(2) minimizes the Rayleigh quotient along each of these lines. It
is easy to show by numerical examples that one cannot restrict the analysis to the half-cone
! � 0, because minima of the Rayleigh quotient on these lines through may surprisingly be
taken in each of the half spaces defined by the tangent manifold ofE

1

() in .
By our geometric construction the set of all possible searchdirections is uniquely deter-

mined byS


() � E



() which is given by

S



() := f+ (1� 

2

)(��

�1

� ) + �v : kvk � 1; v ? � ��

�1

g; (6.36)

where' with sin' =  denotes the opening angle ofF


() and the quantities�, � andÆ are
the sides of the smaller right triangleT shown in Figure 6.2 with

� = (1� 

2

)

1=2

k� ��

�1

k; (6.37)

� = (1� 

2

)k� ��

�1

k; (6.38)

Æ = (1� 

2

)

1=2

k� ��

�1

k: (6.39)

In order to clearify the assignment of�, � and we repeat the definition of the opening angle

sin' =

�

Æ

= :

PINVIT(2) is adequately described (in a sense that any admissible search direction is contained
in S



()� ) as a mapping onS


()� 

�

0

: (S



()� )! P



() : y 7! +

h

argmin

!

(�(+ !y))

i

y:

Unfortunately, this preliminary geometric picture of PINVIT(2) is handicapped by the fact that
P



() is an unbounded set if exceeds some critical value
l

.

Lemma 6.14.Whenever
1

6= 0 and

 > 

L

:=

k� ��

�1

� e

1

(e

1

; � ��

�1

)k

k� ��

�1

k

;

then�
0

onS


()�  has a discontinuity ine
1

yielding an unbounded setP


().

Proof. Since
1

6= 0 we have(���1 � ; e

1

) 6= 0. Therefore, + e

1

is not in the plane
tangential toE

1

() in  and we determine the smallest, called
L

, so that + e

1

2 F



().
Sincek+ #e

1

� ��

�1

k is minimized in# = (e

1

; ��

�1

� ) we obtain for
L



L

k� ��

�1

k = k� ��

�1

� e

1

(e

1

; � ��

�1

)k:

Finally, note thatlim
!!�1

�(+ !e

1

) = �

1

is responsible for the singularity.



6.3. PINVIT(2) convergence theory 117

In order to avoid this discontinuity we analyze instead of (6.35)



0

(#

�

) = #

�

� (I + UDU

T

)(� ��

�1

) (6.40)

where#� is computed so that the Rayleigh quotient of

0 is minimized. The benefit of this
alternative scaling strategy is elucidated in the next lemma.

Lemma 6.15. If 0 <  < 1, then#�, as defined in (6.40), is bounded and so isQ



(), the
image ofS



()�  under our modified representation (6.40) of PINVIT(2).

� : (S



()� )! Q



() : y 7!

h

argmin

#

�(#� y)

i

� y: (6.41)

The mapping� defines the new PINVIT(2) iterate for any search direction fromS



() �  in
a unique way (i.e. the scaling of�(y) is immaterial).

Proof. Obviously, for any search directiony 2 S


()�  it holds

lim

j#j!1

�(#� y) = �();

where� is a continuous function in#. As PINVIT(2) decreases the Rayleigh quotient more
rapidly than PINVIT(1), we have�(# � y) � �( � y) < �(); which entails boundedness
of #. (If y is collinear toe

1

, then# may equal 0.)

6.3.4 A conjecture on the subspace of poorest convergence

As a result of Corollary 6.11, the space in which INVIT(2) takes its poorest convergence is
spanned by at least 3 eigenfunctions ofA. We have not succeeded in proving that poorest
convergence of PINVIT(2) is taken in the 3D spacespanfe

i

; e

i+1

; e

n

g corresponding to�
i

,
�

i+1

and�
n

as formulated in Conjecture 6.16.

Conjecture 6.16.LetL(�) = f 2 R

n

: �() = �g, � 2 (�

i

; �

i+1

), i + 1 < n, be the level
set of the Rayleigh quotient. Then

arg sup

2L(�)

sup

U

T

U=I

sup

jd

ii

j2[0;℄

inf

#2R

�(#� (I + UDU

T

)(� ��

�1

)) 2 spanfe

i

; e

i+1

; e

n

g;

where the supremum inU is taken over all orthogonal matricesU 2 R

n�n and whered
ii

,
1 � i � n, denote the diagonal elements of the diagonal matrixD.

There are some good reasons which make Conjecture 6.16 appear very reasonable. On the
one hand, the mini-dimensional analysis of INVIT(2) (limitcase of PINVIT(2) for = 0) in
Section 6.2 is given within the 3D subspaceH [�3℄ having the Ritz values�

1

, �
2

and�
3

. We
get an asymptotically sharp estimate from (6.13) if�

2

= �

2

and�
3

= �

n

for some specific
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Figure 6.3:Poorest convergence of PINVIT(2) inspanfe
1

; e

2

; e

n

g.

choice of the iteration vector. Additionally, be aware of the fact that such a property of mini-
dimensionality is well known from the PINVIT analysis where(if � 2 (�

i

; �

i+1

))

arg sup

2L(�)

sup

U

T

U=I

sup

jd

ii

j2[0;℄

�(� (I + UDU

T

)(� ��

�1

)) 2 spanfe

i

; e

i+1

g:

On the other hand, there is a clear numerical evidence confirming Conjecture 6.16. Numerical
data are presented in Section 6.5.

6.4 Mini-dimensional analysis

Supposing that Conjecture 6.16 holds, it suffices to analyzePINVIT(2) within a three-dimen-
sional space in order to derive convergence estimates. Hence we assume in the following 2
R

3 ; later we apply the results to 3D subspacespanfe

i

; e

i+1

; e

n

g; for simplicity we sometimes
write i = 1. The present geometry inR3 can be looked up in Figure 6.3. By Equation (6.36)
it holds that

S



()� (1� 

2

)(��

�1

� ) � T ; (6.42)

whereT denotes the tangential plane ofE
1

() in . In other wordsS


andT are parallel planes
since anyz 2 S



() � (1� 

2

)(��

�1

� ) has the form + ��v, � by (6.37),�1 � � � 1

andv ? (I � ��

�1

) so that

(+ ��v; (I � ��

�1

)) = 0:

Applying PINVIT(2) in the form (6.41) provides the justification to remove some degree of
freedom from the set of search directionsS



() as elucidated in Lemma 6.17.
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Figure 6.4:Construction ofq
+

andq
�

.

Lemma 6.17.PINVIT(2) as defined in Lemma 6.15 without loss of generalitycan be restricted
to the 1D curve�S



() with �S


() := �E



() \ S



() and

� : (�S



()� )! Q



() : y 7!

h

argmin

#

(�(#� y))

i

� y

remains to be a surjective mappingQ


().

Proof. By Equation (6.42) anyy 2 �

S



() :=

�

E



() \ S



() can be written asy = ~y +  with
~y 2 �S



(). Thus,

�(y) =

h

argmin

#

�(#� y)

i

� y = #

�

� y = (#

�

+ 1)� (y � )

=

h

argmin

#

�(#� ~y)

i

� ~y = �(~y):

Obviously, one can go beyond the result of Lemma 6.17 in such amanner that there is
a half-circle as a minimal subset of�S



() so that any two points of this half-circle are not
connected by a multiple of. Even on this half-circle� is surjective. Theorem 6.18 discloses
that only the two end points of the half-circles mentioned above are responsible for the poorest
convergence.

Theorem 6.18.As long as preconditioned steepest descent on the set of search directionsS


does not terminate within the smallest eigenpair(e

1

; �

1

), it is of poorest convergence inq
+

or
q

�

with q
�

2 S



() defined by

q

�

= + (1� 

2

)(��

�1

� )� (1� 

2

)

1=2

k(I � ��

�1

)k

� �

�1



k� �

�1

k

: (6.43)
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Figure 6.5:Pointsq
+

andq
�

of extremal convergence.

Proof. We start with the definition of the smallest circular infinitecylinderZ


() enclosing
E



() and also containingE


() + �, � 2 R, i.e.

Z



() := fz + � : z 2 E



(); � 2 Rg;

see Figure 6.4. SinceS


()+(1�)(���

�1

) is a subset of the tangential plane ofZ



()

in ���1+ (I � ��

�1

) there are exactly two elements inS


() \ Z



() for  2 (0; 1). By
using (6.37)–(6.39), these two points calledq

+

andq
�

have the form (6.43). Next we show
that no search direction from the interior ofE



() embodies the poorest convergence. Let
 + d 2

�

E



() and let its image under� be given by#�+ d. Then

d

d#

�

�(#

�

+ d) = (r�(#

�

 + d); ) = 0:

If w = r�(#

�

 + d) = 0, then#� + d would be an eigenvector where collinearity toe
1

is
excluded by the assumption. The remaining eigenvectorse

i

, 2 � i � n�1 can be excluded by
an analysis of the Hessian of�(�) since all these eigenvectors are saddle points of the Rayleigh
quotient. The image of�(E



() � ) is a 2D continuously differentiable manifoldM (#� is
a differentiable function ofy). Now,  ? w implies that the projectionP

M

w to the tangential
plane of�(E



() � ) in #

�

 + d does not vanish. (Note that Lemma 6.17 shows that�

is essentially a mapping from any 2D cross section throughZ



() onM.) Therefore, in a
neighborhood of#� + d another point~# + ~

d with an increased Rayleigh quotient can be
found, which is the image of some+ ~

d 2

�

E



().

Remark 6.19. The proof of Theorem 6.18 provides additional information concerning the
search directions of poorest convergence for the generaln-dimensional case. All the argu-
ments showing that these directions are localized onS



() \ Z



() even hold in theRn while
only the part of the construction ofq

�

is restricted tospanfe
1

; e

2

; e

n

g. In Section 6.5 we make
use of this property in order to give some numerical evidencefor Conjecture 6.16.
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Sinceq
�

by Theorem 6.18 are the only possible candidates for the poorest convergence
we write down the associated admissible (and appropriatelyscaled) search directions of PIN-
VIT(2)

d

�

:= (1� 

2

)

1=2

��

�1

� 

k(I � ��

�1

)k

� 

� �

�1



k� �

�1

k

:

Our next aim is to find out which of the search directionsd

�

is responsible for the poorest
convergence of PINVIT(2). Therefore, we apply the Rayleigh-Ritz procedure (see Equations
(6.33) and (6.34) for its-basis formulation) to the two subspaces[; d

+

℄ and [; d
�

℄. We
determine in each of these subspaces the smallest Ritz values corresponding to each of the
new PINVIT(2) iterates. The larger one of these Ritz values will present the case of poorest
convergence. Next we determine the projection matrices.

We get the pleasant result�A = I 2 R

2�2 , sincekk = 1 and

(; d

�

) = (; (1� 

2

)

1=2

��

�1

� 

k(I � ��

�1

)k

�

� �

�1



k� �

�1

k

) = 0;

(d

�

; d

�

) = (1� 

2

)

(��

�1

� ; ��

�1

� )

k(I � ��

�1

)k

2

+ 

2

kvk

2

= 1:

Therefore, solving the Rayleigh-Ritz generalized eigenvalue problem( �A; �M) equals comput-
ing the inverse eigenvalues of�M = [; d

�

℄

T

�

�1

[; d

�

℄. One derives

�m

11

= 1=�;

and

�m

12

= �m

21

=

(1� 

2

)

1=2

k(I � ��

�1

)k

(��

�1

� ;�

�1

)� (

� �

�1



k� �

�1

k

;�

�1

)

=

(1� 

2

)

1=2

�k(I � ��

�1

)k

(��

�1

� ; ��

�1

)

=

(1� 

2

)

1=2

�

k(I � ��

�1

)k:

Hence�m
11

and �m

12

are the same for eachd
+

andd
�

. Finally, we have

�m

22

= (1� 

2

)

((I � ��

�1

);�

�1

((I � ��

�1

)))

k(I � ��

�1

)k

2

�

�(1� 

2

)

1=2



k(I � ��

�1

)k

(�

�2

; v) + 

2

(v;�

�1

v):

with v = ( � �

�1

)=(k � �

�1

k). Lemma 6.13 provides the justification to consider only
nonnegative vectors for which a little manipulation shows that

� �

�1

 =

�



2



3

(

1

�

3

�

1

�

2

); 

1



3

(

1

�

1

�

1

�

3

); 

1



2

(

1

�

2

�

1

�

1

)

�

T

(6.44)
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and
sgn (�

�2

; v) = �sgn ((�

2

� �

1

)(�

3

� �

1

)(�

3

� �

2

)) = �1;

where we assume
1



2



3

6= 0. Otherwise, by (6.44) we would have(��2; v) = 0 and �

M

would not be modified by interchangingd
+

andd
�

, since only�m
22

depends onv). Then the
choice of these vectors would become meaningless.

Since �m
22

is positive for either choice ofd
�

we sum up

0 < �m

22

[d

+

℄ < �m

22

[d

�

℄:

Now the spectral radius of�M is a monotone increasing function in�m
22

because of

d

d �m

22

�

x

1

x

2

�

T

�

�m

11

�m

12

�m

21

�m

22

��

x

1

x

2

�

= x

2

2

� 0

for (x
1

; x

2

)

T

2 R

2 . We have reached our goal since we identifyd
+

as the search direction
being responsible for the smaller spectral radius of�

M whose inverse leads to the larger one of
each of the smaller Ritz values of( �A; �M) for d

�

.
Let us now summarize the result in Theorem 6.20.

Theorem 6.20 (Poorest preconditioning).Let  2 R

n ,  6= 0, not collinear to any of the unit
vectors. Lemma 6.13 provides the justification to assume � 0. Assuming that Conjecture
6.16 holds, then PINVIT(2), as defined by Equation (6.40) forall admissible preconditioners,
 2 [0; 1), is of poorest convergence (minimal decrease of the Rayleigh quotient concerning
the choice of the preconditioner) within the search direction

d

+

= (1� 

2

)

1=2

��

�1

� 

k(I � ��

�1

)k

+ 

� �

�1



k� �

�1

k

: (6.45)

The Rayleigh-Ritz procedure (6.33) and (6.34), by applyingto the column space ofV = [; d

+

℄,
provides an upper bound for the poorest decrease of the Rayleigh quotient.

In order to derive a convergence estimate for PINVIT(2) we are left with the task to deter-
mine the particular vector� of poorest convergence from

L

[3℄

(�) = f 2 spanfe

1

; e

2

; e

n

g : �() = �;  � 0g: (6.46)

Despite a nonzero scaling constant there is a unique representation ofL[3℄

(�) by ('), ' 2
(0; �=2) with the nonzero components



1

=

��

1

�

�

1

�

2

�

os

2

(') +

�

1

�

�

1

�

n

�

sin

2

(')

�

1=2

;



2

=

�

1

�

1

�

1

�

�

1=2

os('); (6.47)



n

=

�

1

�

1

�

1

�

�

1=2

sin(');
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for � 2 [�

1

; �

2

℄, which can easily be checked by direct computation. Applying Theorem 6.20
to (') allows us to construct the case of poorest convergence (for all preconditioners obeying
the spectral bound defined by). Finally, maximization in' by a numerical method for given
eigenvalues will provide an explicit upper bound for the worst-case convergence of PINVIT(2)
onL[3℄

(�).
Let us sum up the convergence properties in terms of thex-basis notation. Assumex 2 R

n

and let�
i

< �(x) < �

i+1

for i < n � 1. Then in the case of exact preconditioning with
B

�1

= A

�1 it holds the asymptotically sharp bound by Theorem 6.3

�

i;i+1

(�(x

0

))

�

i;i+1

(�(x))

�

0

B

B

�

�

i

(1�

�

i+1

�

n

)

2�

i+1

� �

i

(1 +

�

i+1

�

n

)

1

C

C

A

2

=: �

2

[INV IT (2)℄; (6.48)

which turns into a sharp estimate as�! �

i

. For 2 (0; 1) we have a trivial upper bound by
the PINVIT convergence theory

�

i;i+1

(�(x

0

))

�

i;i+1

(�(x))

�

�

 + (1� )

�

i

�

i+1

�

2

=: �

2

[PINV IT (1)℄; (6.49)

while a sharp bound can be determined numerically by Theorem6.20 if applied toL[3℄

(�) by
(6.46), which can be parametrized in' 2 [0; �=2℄ according to (6.47). This section is closed
with some conjecture on the upper bound for PINVIT(2). Numerical evidence will be given
in Section 6.5.4.

Conjecture 6.21. For x 2 R

n and �
1

< �(x) < �

2

the PINVIT(2)-iteratex0 satisfies the
(non-sharp) estimate

�

1;2

(�(x

0

))

�

1;2

(�(x))

�

�

 + (1� 

2

)�[INV IT (2)℄

�

2

: (6.50)

Obviously, (6.50) turns into a sharp estimate for ! 0 or  ! 1.

6.5 Numerical algorithms

The aim of this section is twofold. On the one hand, the convergence factors of PINVIT(2)
are illustrated in comparison with those of PINVIT(1). On the other hand, numerical evidence
shall be given for the validity of Conjectures 6.16 and 6.21.

6.5.1 Numerical results for the Laplacian

We illustrate the convergence estimates derived above by computing these bounds for the 5
point finite difference approximation of the Laplacian on[0; �℄

2 with homogeneous Dirichlet
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Figure 6.6: Largest value of�0 for PINVIT(2) onL(�) with � 2 [1; 10℄. Eigenvalues:
(2; 5; 8; 10; : : : ; 4=h

2

). Left: h = �=10. Right:h = �=1000.

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
�

0, h = �=10 2.19 2.29 2.42 2.57 2.74 2.94 3.16 3.38 3.60 3.81 4
�

0, h = �=1000 2.22 2.34 2.47 2.63 2.81 3.01 3.22 3.43 3.64 3.83 4

Table 6.1:�0 for � = 4 and = 0; 0:1; : : : ; 1:0.

boundary conditions on the entire boundary. Using a uniformmesh with the sizeh = �=N ,
N 2 N , in both directions we obtain the discrete eigenvalues

�

(k;l)

=

2

h

2

(2� os(kh)� os(lh)) ; k; l 2 N; 1 � k; l � N � 1: (6.51)

While the PINVIT convergence estimates onL(�) only depend on the nearest eigenvalues
enclosing�, we are in the case of PINVIT(2) faced with the necessity to define additionally
the largest eigenvalue�

n

, i.e.�
n

� 4=h

2 for largeN by (6.51). Equations (6.12) and (6.13)
suggest, at least for a neighborhood of = 0, only a weak dependence on�

n

inasmuchh
is sufficiently small. For the following examples we use�

n

� 400=�

2 for h = �=10 and
�

n

� 4 � 10

6

=�

2 for h = �=1000. For simplicity the smallest eigenvalues are in both cases
set to(�

1

; � � � ; �

4

) = (2; 5; 8; 10), which are the limit values forh ! 0. In Figure 6.6
the largest Rayleigh quotient�0 attainable by PINVIT(2) is plotted against� 2 [2; 10℄ for
 = 0; 0:1; : : : ; 1. In other words, the content of Figure 6.6 is an upper bound for the decrease
of the Rayleigh quotient if PINVIT(2) is applied to an arbitrary vector inL(�). The reason
why all curves intersect at� = �

i

is simply thatL(�
i

) contains the eigenvector associated with
�

i

in which PINVIT(2) attains its poorest convergence, i.e. stationarity. The computations
underlying this figure make use of Theorem 6.20 which is applied in the interval[�

i

; �

i+1

℄ to
the eigenvalues(�

i

; �

i+1

; �

n

). Numerical maximization within the parameter', see Equation
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Figure 6.7:Convergence factors�2 for PINVIT(2) onL(�) with � 2 [1; 10℄. Eigenvalues:
(2; 5; 8; 10; : : : ; 4=h

2

). Left: h = �=10. Right:h = �=1000.

(6.47), serves to determine the vector of poorest convergence inL(�). The curves in Figure 6.6
for h = �=10 andh = �=1000 resemble each other, giving evidence for the weak dependence
on�

n

; this is supported by the numerical data listed in Table 6.1.

The data presented in Figure 6.6 can also be used to compute anupper bound for

�

i;i+1

(�

0

)=�

i;i+1

(�)

giving the convergence factors�2[PINV IT (2)℄. These factors are displayed in Figure 6.7.
Once more there is only a weak dependence on the choice of�

n

. Obviously, = 1 results in
�[PINV IT (2)℄ = 1 or stationarity of PINVIT(2). In the opposite case of exact precondition-
ing or = 0, Theorem 6.3 holds.

These data allow a comparison of the convergence factors of PINVIT(1) and PINVIT(2);
see Figure 6.8. The PINVIT(1) convergence bounds�[PINV IT (1)℄ are drawn left as broken
lines for = 0; 0:1; : : : ; 1:0. These broken lines have a constant value in[2; 5℄ for each and
they are by Theorem 4.1 asymptotically sharp upper estimates for the ratios

�

1;2

(�

0

)=�

1;2

(�);

which are also plotted as dotted lines against� 2 [�

1

; �

2

℄ = [2; 5℄.
There is a third type of curves shown in Figure 6.8: The solid curves stand for the worst

case convergence of PINVIT(2). They are computed once more for = 0; 0:1; : : : ; 1:0 with an
algorithm elucidated in Section 6.5.3, which is not built onConjecture 6.16 so that we obtain
further evidence for its validity by the numerical data.

Figure 6.8 (right side) also displays the convergence estimates

�(�; ) = (�

0

� �

1

)=(�� �

1

)
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Figure 6.8:Comparison of PINVIT and PINVIT(2) estimates in[�
1

; �

2

℄ = [2; 5℄ with �
n

=

4=h

2, h = �=10

3. Left: Æ := �

1;2

(�

0

)=�

1;2

(�), Right:�(�; ).

 0 0.1 0.2 0.3 0.4 0.5 0.7 0.9 1
�

2

[PINV IT (1)℄ 0.160 0.212 0.270 0.336 0.410 0.490 0.672 0.884 1.0
�

2

[PINV IT (2)℄ 0.062 0.117 0.184 0.262 0.349 0.444 0.654 0.881 1.0

Table 6.2:Convergence factors� for PINVIT and PINVIT(2).

for PINVIT(2) by solid lines, and that for PINVIT(1) by usingdotted lines. While the worst
case convergence of PINVIT(1) is always bounded from below by the INVIT(1) convergence
factor�2[INV IT (1)℄ = (�

1

=�

2

)

2

= 0:16 (the limit for  ! 0), PINVIT(2) hastens conver-
gence significantly.

For exact preconditioning, or = 0, the convergence factor�2[INV IT (2)℄ by Equation
(6.48) equals about0:0625. This small value of this bounding factor�2[INV IT (2)℄ provides
a better justification for the convenient rule-of-thumb, namely that the convergence rate of a
(multigrid) preconditioner transfers to that of PINVIT(2), since the “offset-factor” (i.e. 0.0625
for  = 0) in the case of exact preconditioning is very small. Table 6.2 lists some numerical
values for these�2 factors of PINVIT(1) and PINVIT(2).

Finally, note that the asymptotic convergence rates�(�

1

; ) coincide with the aforemen-
tioned quantities since

lim

�!�

1

�

1;2

(�

0

)

�

1;2

(�)

= lim

�!�

1

�(�);

because oflim
�!�

1

(�

2

� �)=(�

2

� �

0

) = 1.
Let us summarize that acceleration techniques like PINVIT(2) have their largest impact

on hastening poorest convergence for small (which should also be understood as a general
principle for methods of the class of preconditioned subspace iterations). In contrast to this,
for  near 1, PINVIT(1) as well as PINVIT(2) reach stationarity inthe most unfavorable case.
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But in practice, PINVIT(1) as well as PINVIT(2) open a wide corridor between poorest and
best convergence, cf. Chapter 3. In fact, for an appropriatechoice of the preconditioner the
fastest convergence is achieved for = 1, sinceE

1

() is the largest set of new PINVIT iterates
andE

1

()�  defines the largest set of search directions in the case of PINVIT(2).

6.5.2 Connectedness ofL
+

(�)

The next lemma shows that the level set of nonnegative vectors with a fixed Rayleigh quotient
is arcwise-connected and therefore underpins the applicability of the numerical search algo-
rithms onL

+

(�) presented in Section 6.5.3. We note that the level setL(�) (containing all
 2 R

n with �() = �) is a non-connected set, as no path of a constant Rayleigh quotient
through the origin can be constructed.

Lemma 6.22. Let � 2 (�

1

; �

n

). The level set of the Rayleigh quotient on all nonnegative
vectors

L

+

(�) = f 2 R

n

:  � 0; �() = �g

is arcwise-connected.

Proof. The proof is only given for the case of simple eigenvalues butits generalization is
straightforward. We first note thatL

+

(�) is radially connected, i.e.� 2 L
+

(�) for any� > 0.
Therefore, we take no notice of the norm of the paths we construct. Let us start with� 6= �

i

and assume� 2 (�

i

; �

i+1

). We define� 2 L
+

(�) with only two nonzero components given by

�

i

=

�

�

i

(�

i+1

� �)

�(�

i+1

� �

i

)

�

1=2

; �

i+1

=

�

�

i+1

(�� �

i

)

�(�

i+1

� �

i

)

�

1=2

: (6.52)

We show now that any 2 L
+

(�) is joined with� by an arc inL
+

(�).
If  6= �, then there is a positive component

j

for j 6= i; i+1. First assumej < i. In order
to find a path from to � we damp out the component

j

(by multiplying 2
j

with 0 � � � 1)
and compensate this by increasing2

i

(by adding� > 0). This process takes place on a path in
L

+

(�) since for any� 2 [0; 1℄ the equation

� =

P

n

k 6=i;j



2

k

+ �

2

j

+ (

i

+ �)

2

P

n

k 6=i;j



2

k

=�

k

+ �

2

j

=�

j
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i
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(�� 1)(

�

�

j

� 1)

2
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= (�

2

+ 2�

i

)(

�

�

i

� 1)

and has the positive solution� = �(�)

� =

 



2

i

+ (1� �)

2

j

��

�1

j

� 1

��

�1

i

� 1

!

1=2

� 

i

:
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Figure 6.9:Coefficients of the vector of poorest PINVIT(2) convergence

The endpoint� = 0 of the arc is a vector with a vanishingjth component. We proceed similarly
if j > i+1, but now we increase theith component. Having removed all components different
from i andi+ 1 we end in a multiple of�.

The remaining case� = �

i

is treated as follows: To show that any 2 L
+

(�

i

) is connected
in L

+

(�

i

) with �, we first ensure
i

> 0 by continuously increasing theith component, which
does not change the Rayleigh quotient. Then we follow the path � 2 [0; 1℄

(�; �) := (�

1

; : : : ; �

i�1

; 

i

; �

i+1

; : : : ; �

n

) 2 L

+

(�

i

);

where� = �(�) is given by

� = �

 

(

i�1

X

k=1



2

k

(

�

i

�

k

� 1))=(

n

X

k=i+1



2

k

(1�

�

i

�

k

))

!

1=2

:

6.5.3 A search algorithm onL
+

(�)

In order to give numerical evidence for the validity of Conjecture 6.16, we are looking for an
algorithm to determine numerically the vector of poorest convergence of PINVIT(2) onL(�)
for given 6= 0. Hence, we have to deal with two nested constrained optimization problems
where the objective functional�0 is the Rayleigh quotient of the PINVIT(2) iterate, which is
maximized.

1. Outer Loop: Search routine onL
+

(�). We perform a sequential random search with line
minimization. The underlying idea is essentially the same as the one used in the proof of
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Figure 6.10:Deviation between “experimental” and “theoretical” coefficients.

Lemma 6.22. To begin with, for given 2 L
+

(�) with � 2 (�

i

; �

i+1

), two nonnegative,
nonzero random vectors

a = (a

1

; : : : ; a

i

; 0; : : : ; 0)

T

; b = (0; : : : ; 0; b

i+1

; : : : ; b

n

)

T

are generated. Then�( + a) < � and�( + b) > �. By the mean value theorem for
given� > 0 a certain� = �(�) > 0 always exists with

�(+ �a+ �b) = �:

A line search in� is performed to maximize the objective functional�

0, i.e. the Rayleigh
quotient of the PINVIT(2) iterate of~ := + �a+ �(�)b.

2. Inner loop: Preconditioned steepest descent is applied to ~. Obviously, Conjecture 6.16
is not applied. But owing to Theorem 6.18, cf. Remark 6.19, and instead of presenting
the search space asV = [~; (I + UDU

T

)(~� �(~)�

�1

~)℄ for anyorthogonalU 2 R

n�n

and diagonalD,� � d

ii

� , one can confine to considering

V = [~; (I + uu

T

)(~� �(~)�

�1

~)℄

for all u 2 R

n on the unit ball.

The program code to solve the nested optimization problem iswritten in MATLAB. For the
inner loop the MATLAB templatesg min of Edelman et. al. [37, 38] has been applied
which realizes the optimization with respect to the Stiefelmanifold Stief(n; k) of n � k

orthogonal matrices (herek = 1). We only provide the PINVIT(2) functional, and a dog-leg
step algorithm (interpolating steepest descent and a Newton’s method step) was selected where
the Euclidean metric endows the constraint surface.

For a numerical illustration of Conjecture 6.16 we have selected (the low-dimensional)
example matrix� = diag(2; 5; 8; 10; 13). Our approach to check the validity of Conjecture
6.16 consists of two steps:

(A) In the first step we generate reference data on the basis ofConjecture 6.16. This is
done by applying PINVIT(2) to the vector(') as defined by Equation (6.47) where
' parametrizesL[3℄

(�). PINVIT(2) in the interval[�
1

; �

4

℄ = [2; 10℄ is applied to these
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Figure 6.11:-dependence of vector of poorest PINVIT(2) convergence. Left:
1

, 
2

, 
5

in
[�

1

; �

2

℄ = [2; 5℄ , Right:'�().

(') and Theorem 6.20 is used to determine the poorest convergence in dependence on
the choice of the preconditioner. In a second outer loop, theangle'� 2 (0; �=2) for
given� is determined so that PINVIT(2) attains its poorest convergence onL(�). The
components of('�), embedded in theR5 , are drawn in Figure 6.9.

Finally, in the interval[�
4

; �

5

℄ = [10; 13℄ poorest convergence of PINVIT(2) is fully
controlled by Lemma 6.12. The components of the vector of poorest convergence are
given by (6.52) fori = 4.

(B) In a second step the search algorithm onL

+

(�), as elucidated at the beginning of this
section, is applied. Therefore, the interval[�

1

; �

4℄

is subdivided into 400 equidistant
grid points and on each level setL(�) the vector of poorest convergence is determined
withoutusing Conjecture 6.16.

The numerical results gained in steps (A) and (B) strikinglyconfirm Conjecture 6.16.
After a number of 100 sweeps of the outer search loop onL

+

(�) the deviation between the
“theoretical” coefficients (see (A)) and those “experimental” coefficients (see (B)) is small.
Table 6.10 lists the deviations as defined by

d

i

:= max

�2[�

j

;�

j+1

℄

j

Theory

i

� 

Exp:

i

j; i = 1; : : : ; 5; j = 1; 2; 3:

Finally, we would like to point out that the components of('

�

) by (6.47) depend on.
This is to be seen in contrast to the behavior of PINVIT(1) (cf. [95] and Chapter 3) where the
corresponding vector is-independent. For our test problem Figure 6.11 shows the compo-
nents

1

, 
2

and
5

in [�

1

; �

2

℄ for various; additionally the'�[℄ is drawn.
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Figure 6.12:�[℄ for �
n

= 10; 100; 10

10.

6.5.4 On conjecture 6.21

We check Conjecture 6.21 numerically within theR3 for � = diag(2; 5; �

3

), and�
3

= 10,
100; 10

10. For each� the quantity

�[℄ := �̂

2

[PINV IT (2)℄�

�

max

�2[2;5℄

�

i;i+1

(�

0

)

�

i;i+1

(�)

�

with
�̂[PINV IT (2)℄ :=  + (1� 

2

)�[INV IT (2)℄

is computed and plotted in Figure 6.12 versus 2 [0; 1℄. Since�[℄ is positive, Conjecture
6.21 is never violated. Obviously,�2[PINV IT (2)℄ is not a sharp estimate, but according to
the theory, it is asymptotically sharp as ! 0 or  ! 1.

6.6 Critical conclusion

- A new convergence theory of INVIT(2) and central elements of such a theory for PIN-
VIT(2) have been presented.

- The new estimate for INVIT(2) is sharp in�
i

, �
i+1

,  and asymptotically sharp in�.
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- The geometry of PINVIT(2) has been cleared up as well as the dependence of poorest
convergence on the choice of the preconditioner.

- Poorest convergence with respect to the level setL(�) is currently not underpinned by
theoretical results. Conjecture 6.16 makes a mini-dimensional convergence analysis of
PINVIT(2) possible.

- The numerical tests give every evidence for the validity ofConjecture 6.16.

Geometric methods as used for the analysis of PINVIT(k),k = 1; 2, seem to be very successful
for understanding the underlying principles of these preconditioned eigensolvers. It is an
open question how comparable techniques can help to understand the most important and very
promising scheme of PINVIT(3), also called LOPCG, see Section 7.1.
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7. NUMERICAL EXPERIMENTS

In this chapter we report on the results of some numerical experiments with the PINVIT
schemes. Firstly, in Section 7.1, our intention is to give a numerical comparison of the ef-
ficiency of PINVIT(k,s) for smallk and various preconditioners. This will provide numerical
evidence for the optimality of PINVIT(3,s), also called LOBPCG [72]. These demonstrations
are restricted to our model problem, i.e. the Laplacian on[0; �℄

2, discretized by using linear
finite elements. Numerical comparison of PINVIT(k,s) with the Rayleigh quotient multigrid
minimization technique of Mandel and McCormick [84] and thedirect multigrid approach of
Hackbusch [52, 55] are contained in [93], while a comparisonwith the Jacobi-Davidson type
schemes JDQR and JDCG is given in [74].

Subsequently, in Section 7.2 we present an adaptive scheme for PINVIT(k,s). Adaptive
discretization methods are well known to provide numericalsolutions of partial differential
equations and corresponding eigenproblems (within some prescribed tolerance) with only a
small portion of the work necessary when uniform grid refinement is employed. The necessary
iteration error estimator and discretization error estimator are briefly reviewed [97]. Numerical
experiments on a slit domain with mixed boundary conditionsexemplify the effectiveness of
these a posteriori error estimators.

7.1 Comparison of the PINVIT(k,s) schemes

We consider the eigenproblem for the Laplacian on[0; �℄

2 with homogeneous Dirichlet bound-
ary conditions. The problem is discretized by using linear finite elements on a uniform triangle
mesh with the grid parameterh = �=64 and3969 inner nodes. (Numerical results for a larger
problem with more than16� 10

6 nodes are contained in [93].) The discretized eigenproblem
is a generalized matrix eigenvalue problem for the pencilA � �M , whereA is the stiffness
matrix for the Laplacian andM is the mass matrix. The PINVIT(k,s) schemes are tested for
the following multigrid preconditioners: on the one hand, we apply aV -cycle preconditioner
[14] using Gauss-Seidel smoothing (alternatively Jacobi smoothing) on a hierarchy of grids
h

l

= �=2

l, l = 2; : : : ; 6, and exact solution on the coarsest grid. On the other hand, we make
use of the hierarchical basis preconditioner [144, 147] acting on grids withh

l

, l = 1; : : : ; 6, so
that the coarsest finite element space only consists of a single basis function.
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Figure 7.1:Convergence of�0 � �

1

of PINVIT(k) fork = 1; : : : ; 6.

Experiment 1. To begin with, we compare the results of PINVIT(k,1),k = 1; : : : ; 6 where
we use theV (2; 2)-cycle preconditioner with 2 steps of Jacobi pre- and postsmoothing each.
Figure 7.1 displays the error�0 � �

1

of the computed eigenvalue approximations�0 versus
the iteration index for PINVIT(k,s) andk = 1; : : : ; 6. In fact, each curve represents the
case of poorest convergence toward�

1

for 100 random initial vectors (the same for eachk).
The relatively poor convergence in the first steps accounts for �0 > �

2

and the attraction to
eigenvalues larger than�

1

. The outcome of this experiment exemplifies (fors = 1) that

1. PINVIT(1,s) and PINVIT(2,s) are both less efficient than PINVIT(3,s) (which even
holds if related to the total expense per step),

2. PINVIT(3,s) or LOBPCG appears as the optimal scheme sincethe slope of the curves
for PINVIT(k,s),k � 4, is more or less the same as the one of PINVIT(3,s).

The optimality of PINVIT(3,s) was first described by Knyazev, see [70, 72, 73], but a theoreti-
cal analysis is still not available. In [72] Knyazev points out that PINVIT(3,s) has aconjugate
gradient like convergence behaviorand calls the scheme Locally Orthogonal Block Precon-
ditioned Conjugate Gradient (LOBPCG). The numerical experiments in [72, 75] strikingly
confirm the cg-like convergence properties.

In the light of this optimality of PINVIT(3,s), we restrict the further discussion to the
schemes PINVIT(k,s),k = 1; 2; 3.

Experiment 2. Next, we compare the computed convergence factors for the vector schemes
PINVIT(k), k = 1; 2; 3, with the theoretical factors for PINVIT(1), which are trivial upper
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V (1; 1) V (2; 2)

PINVIT(k) ��

2

�

2

max



est

�

2

Theory

��

2

�

2

max



est

�

2

Theory

k = 1 0.167 0.202 0.399 0.4080.155 0.170 0.119 0.221
k = 2 0.122 0.254 0.306 0.3400.063 0.0876 0.065 0.193
k = 3 0.106 0.215 0.317 0.3480.025 0.062 0.074 0.197

Table 7.1: Convergence factors for PINVIT(k,1) fork = 1; 2; 3.

bounds for PINVIT(k),k � 2. This is done forV (i; i)-cycle preconditioning performing
i = 1; 2 steps of Gauss-Seidel pre- and postsmoothing. The results are listed in Table 7.1.

Each scheme is applied to the same 200 random initial vectorsand the iteration is stopped
if the error�0 � �

1

is less than10�8. All schemes for each random initial vector converge to
the smallest eigenpair.

The quantities listed in Table 7.1 are defined as follows:��

2 is the mean value of all con-
vergence factors�2 (see Chapter 4) computed from the numerical data by

�

0

� �

1

�

2

� �

0

�

�

2

� �

�� �

1

=: �

2

:

The�-factors are only recorded if� < �

2

and�
max

is the maximum over all these� for the
iterations to all 200 initial vectors. The quantity

est

is the maximum of all ratios of residuals
(taken in the Euclidean norm)

kAx

0

� �Mxk

kAx� �Mxk

;

where, once more, the ratios are only stored if� < �

2

. Hence,
est

defines the maximal
eigenvalue of the error propagation matrixI � B

�1

A “seen” by the iterates. Finally,�2
Theory

is computed by inserting
est

in (4.17), the convergence factor of PINVIT(1).

Figure 7.2 displays the convergence history of PINVIT(k) for theV (2; 2) preconditioner.
Therein,�0 � �

1

and�2 are plotted versus the iteration index for 20 random initialvectors.
The slope of the bold line in Figure 7.2(a) represents the theoretical asymptotic behavior of
PINVIT(1) which is determined by�

Theory

, i.e., we have drawn(�
Theory

)

2i

(�

2

� �

1

) against
the iteration indexi. In contrast to this, the bold line in Figure 7.2(b) is the theoretical bound as
derived in Theorem 4.6 for PINVIT(1), i.e.(�(

est

; �

1

; �

2

))

2 with 
est

� 0:119 corresponding
to PINVIT(1) with V (2; 2) preconditioning. Note that the first iteration is of a relatively fast
convergence and that the convergence later slows down.

Table 7.2 lists the analogous data for the hierarchical basis preconditioner. The iteration
is terminated whenever�0 � �

1

is less than10�6. Since the hierarchical basis preconditioner
only satisfies (2.4) for someÆ

1

> 2, we have enforced PINVIT(1) convergence by scaling the
preconditioner with the constant1=2. For this choice we observe the poor value

est

� 0:94.
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��

2

�

2

max

PINVIT(1) 0.883 0.929
PINVIT(2) 0.868 0.916
PINVIT(3) 0.519 0.633

Table 7.2: PINVIT(k) using hierarchical basis preconditioning.

Residuals
i j PINVIT(1,s)) PINVIT(2,s)) PINVIT(3,s))
1 1 1:91� 10

�6

1:91� 10

�6

1:91� 10

�6

1 2 4:17� 10

�1

4:17� 10

�1

4:17� 10

�1

1 3 4:14� 10

�1

4:14� 10

�1

4:14� 10

�1

1 4 4:32� 10

�1

4:32� 10

�1

4:32� 10

�1

3 1 1:24� 10

�3

9:38� 10

�4

8:31� 10

�4

3 2 7:65� 10

�3

9:22� 10

�3

5:51� 10

�3

3 3 3:31� 10

�2

2:25� 10

�2

2:10� 10

�2

3 4 3:49� 10

�2

4:84� 10

�2

3:66� 10

�2

6 1 2:32� 10

�6

3:86� 10

�7

2:95� 10

�7

6 2 4:32� 10

�4

1:22� 10

�5

6:23� 10

�6

6 3 9:43� 10

�4

2:20� 10

�4

6:75� 10

�5

6 4 5:94� 10

�3

1:22� 10

�2

7:74� 10

�3

Table 7.3:PINVIT(k,s): Residuals in stepi = 1; 3; 6 for thejth Ritz vector.

The corresponding convergence history is presented in Figure 7.4 providing evidence for the
excellent performance of PINVIT(3).

Experiment 3. We consider the preconditioned subspace scheme PINVIT(k,s) forV (2; 2)
preconditioning with Gauss-Seidel smoothing. The 7-dimensional initial subspace is con-
structed in a way that thejth column ofV is given as the grid restriction of the function
(x=�)

j=2

+ (y=�)

j=3. Rayleigh-Ritz is applied toV and results in the initialV (0). After this,
PINVIT(k,s) is applied toV (0) for k = 1; 2; 3. In Figure 7.4 the differences�(i)

j

� �

j

are

recorded forj = 1; : : : ; 4, versus the iteration indexi. The iteration is stopped if�(i)
4

� �

4

�

10

�8. This is the case after 23 PINVIT(1,7) iterations but only 10PINVIT(3,7) steps. In order
to allow easy comparison all plots have been scaled to the same abscissa. Finally, Table 7.3
lists the residuals (with respect to the Euclidean norm) of theM -normalized Ritz vectors for
the first iterations.
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Figure 7.4:Preconditioned subspace iteration:�(i)
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for j = 1; : : : ; 4 versus the iteration
indexi for PINVIT(k,7) usingV (2; 2) preconditioning.
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7.2 An adaptive subspace eigensolver

Let us report in condensed form on an adaptive scheme for PINVIT(k,s). Central elements of
an adaptive solver, both for boundary value problems as wellas for eigenvalue problems of a
given partial differential operator, area posteriorierror estimators. A posteriori error estima-
tors for the eigenvalue problem can be derived in the generalsetup of Galerkin methods for
nonlinear variational problems [131]. Those estimators, specifically designed for the eigen-
value problem, have not reached the same attention as the ones for boundary value problems;
see the works of Friberg [43], Heuveline and Rannacher [59] as well as [97].

In [97] a residual-based a posteriori error estimator has been suggested. By using the
notation of Section 5.1 the estimatorF

i

reads

F

i

= (r�(v

i

); B

�1

d

i

) = 2kd

i

k

2

B

; (7.1)

wherev
i

is theith column ofV , i.e. theith Ritz vector, andd
i

is the associated preconditioned
residual.

As shown in Theorem 3.1 in [97],F
i

provides an upper estimate for the distance of theith
Ritz value�

i

, �
i

2 [�

m

; �

m+1

), to the nearest eigenvalues�
m

and�
m+1

in the form

(�

i

� �

m

)(�

m+1

� �

i

) �

�

m+1

2(1� )

F

i

: (7.2)

The Courant-Fischer principles guarantee a saturation assumption (cf. [10]) to hold forF
i

.
Equation (7.2) can be used to define aniteration error estimator, in order to construct a

stopping condition for the iterative solver, as well as adiscretization error estimatorproviding
local indicators to steer the mesh refinement process. The latter is a hierarchical estimator,
since the error indicators are evaluated within a space of higher order elements. The error
estimator for PINVIT(1,s), as suggested in [97], can also beapplied to any of the schemes
PINVIT(k,s). Both error estimators can be coupled to a certain subsetP � f1; : : : ; sg con-
taining indexes of eigenfunctions of low regularity. The adaptive multigrid eigensolver should
give best results for those eigenfunctions whose indexes are contained inP .

We reproduce from [92, 97] the numerical study of the eigenproblem for the Laplacian on
a slit annulus; implementational details are described in [80, 81]. Therefore, let the domain be
given by




r

= fz 2 R

2

: r � kzk � 1g n A

+

;

whereA+ denotes the axis(x; 0)T , x > 0. Homogeneous Dirichlet boundary conditions
are supposed on the circles with the radiir

0

and1, while homogeneous Dirichlet (Neumann)
boundary conditions are given on the top (bottom) of the slit. In Figure 7.5 we show forr

0

= 0

the contour lines of the first three eigenfunctions togetherwith some final triangulations for
various choices ofP . Analogous results forr

0

= 1=4 are depicted in Figure 7.6. The analytical
solutions of both problems in terms of Bessel functions of the first and second kind and frac-
tional order are given in [92, 97], where one can also find further information on the accuracy
of the numerical solutions, which illustrate the efficacy ofthe adaptive multigrid scheme.
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8. CONCLUSION AND OUTLOOK

In this work we have presented an innovative approach to the analysis and classification of
preconditioned gradient type eigensolvers. These eigensolvers (mainly developed for the so-
lution of symmetric positive definite eigenvalue problems deriving from the finite difference or
finite element discretization of self-adjoint and coerciveelliptic partial differential operators)
have been known in the literature since the late 1950s. The “classical” convergence analysis of
these preconditioned eigensolvers developed in the last decades has only led toasymptotically
sharp convergence estimates.

The present work gives a reinterpretation of preconditioned gradient type eigensolvers
and of some of their extensions and generalizations within the theoretical setup of (a variant
of) subspace iteration, modified in such a way that the associated linear system is solved
approximately by using preconditioning. On this basis, a certain hierarchy of preconditioned
eigensolversis suggested, in which the classical preconditioned gradient scheme appears as
the most simple representative. Within the light of our reinterpretation we prefer to call this
scheme preconditioned inverse iteration.

New proof techniques have been devised within this framework, leading tonon-asymptotic
sharpestimates for preconditioned inverse iteration. Such estimates have not only been de-
rived concerning thepoorestconvergence, but additionally those estimates have been provided,
which describe thefastest possibleconvergence. On the one hand, the estimates on the poor-
est convergence constitute a considerable improvement of the classical estimates, see [95]. On
the other hand, the estimates on the fastest possible convergence promote an understanding for
the extremely fast convergence of such schemes, which is often observed in the first iteration
steps. Moreover, several sharp estimates have been derivedfor the iterative schemes of steep-
est descent and preconditioned steepest descent, which arecalled INVIT(2) and PINVIT(2)
within our hierarchy of preconditioned eigensolvers.

The analytic treatment of the preconditioned eigensolversdiscussed in this work was orig-
inally stimulated by theunderlying geometry. The key point is that for the basic scheme of
preconditioned inverse iteration the set of possible iterates (corresponding to all admissible
preconditioners) is given by a ball with respect to theA-geometry. This intrinsic geometry has
been proved very useful for carrying out the analysis. However, the symmetry and positive
definiteness ofA are decisive for our setup and seem to limit the applicability of these proof
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techniques to larger classes of eigenproblems, e.g. for non-symmetric matrices.
The geometric interpretation has also conveyed a deepened insight into preconditioning

for iterative eigensolvers. The resulting and increased understanding of preconditioning tech-
niques for the iterative solution of the eigenproblem proves these eigensolvers as

+ stable and robust: Convergence to an eigenpair from scratch is guaranteed even for poor
preconditioners.

+ conceptionally simple: Only some matrix-vector multiplications are to be provided as
“black-box” routines, namely the products with the discretization and mass matrix and
with the preconditioner. There is no necessity to hold any ofthese operators as full
matrices in the computer storage. Beyond that, no matrix factorizations are to be per-
formed.

In contrast to that, only simple linear operations, inner products and the Rayleigh-Ritz
procedure are required to realize the PINVIT(k,s) schemes.

+ easy to implement and cheap: Any multigrid solver as developed for the solution of
boundary value problems can be interpreted as a preconditioner and can be employed
within a preconditioned eigensolver. Therefore, no elaborate programming techniques
are required in order to write special multigrid code for theeigenproblem. Each iteration
step can be realized withO(n) operations in the best case. Not too much effort should
be made to construct very accurate preconditioners, since overly accurate approximate
inverses do not always guarantee fastest convergence to an eigenpair.

As a very important feature of preconditioned eigensolvers, grid-independent convergence
holds for such high-quality multigrid preconditioners which are equipped with mesh indepen-
dent estimates on their quality. In addition to this, by using the advancedmulti-level precon-
ditioners, multigrid convergence for eigensolvers can be shownfor the first timeunder the
assumptions made in the theory of multilevel preconditioning: Preconditioned eigensolvers
can solve eigenproblems on non-uniform grids and without any assumptions on the regularity
of the problem with optimal computational complexity.

We hope that the geometric techniques introduced in this work will prove as useful tools
for the analysis of the following (partially) unsolved problems as given within the setup of our
mesh eigenproblems:

- a convergence analysis for the Locally Optimal Preconditioned Conjugate Gradient
method [70, 72], which we call PINVIT(3,s) within the hierarchy of preconditioned
eigensolvers introduced in Chapter 1. Such a theory should also prove the optimal-
ity and cg-like convergence properties of PINVIT(3,s) compared to all schemes PIN-
VIT(k,s) for k � 4.
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- a sound theory of preconditioned eigensolvers using shiftstrategies in order to compute
eigenpair approximations from the interior of the spectrumwithout previous knowledge
of any smaller eigenvalues. Such an approach will have to deal with the difficulty of
preconditioning indefinite matrices.

- a (geometric) understanding of those improved preconditioning strategies, which allow
us (in the sense of Chapter 3) to construct highly efficient preconditioners especially for
the eigenvalue problem. Those preconditioners will be poorfor the solution of linear
systems, but should increase the speed of convergence toward the searched eigenpair.

- the further development and convergence theory of those refined preconditioned eigen-
solvers, which are built on a defect correction scheme in theorthogonal complement of
the actual eigenvector approximation.

- the construction of efficient preconditioned iterative solvers for quadratic eigenprob-
lems, see [5, Chapter 9] and [128], which, e.g., occur in the vibration analysis of damped
mechanical structures.
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Mathematik, 9:213–239, 1981.

[55] W. Hackbusch.Multi-grid methods and applications. Springer series in computational
mathematics 4. Springer, Berlin, 1985.

[56] W. Hackbusch and G. Hofmann. Results of the eigenvalue problem for the plate equa-
tion. Z. Angew. Math. Phys., 31(6):730–739, 1980.

[57] T. Helgaker, P. Jørgensen, and J. Olsen.Molecular electronic-structure theory. John
Wiley & Sons, Chichester, 2000.

[58] M.R. Hestenes and W. Karush. A method of gradients for the calculation of the char-
acteristic roots and vectors of a real symmetric matrix.J. Res. Nat. Bureau Standards,
47:45–61, 1951.

[59] V. Heuveline and R. Rannacher. A posteriori error control for finite element approxima-
tions of elliptic eigenvalue problems. SFB 359 Preprint 8/2001, Universität Heidelberg,
2001.

[60] R. Hiptmair and K. Neymeyr. Multilevel method for mixedeigenproblems. Sonder-
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[94] K. Neymeyr. Why preconditioning gradient type eigensolvers? Sonderforschungsbe-
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[136] H. Wielandt. Beiträge zur mathematischen Behandlung komplexer Eigenwertprobleme,
Teil III: Das Iterationsverfahren in der Flatterrechnung.Technical Report B44/J/21,
Aerodynamische Versuchsanstalt Göttingen, Germany, 1944.
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1699, 1997.



LIST OF SYMBOLS 157

List of Symbols

INVIT(k,s) . . . . . . . . . . . . . . . . . . . . . . . . . . 22
PINVIT(k,s) . . . . . . . . . . . . . . . . . . . . . . . . . 23

B



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
C



() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
E



(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
E

k



(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
E



() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
F



() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
L(�) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
L

+

(�) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Q



() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
S



() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Z



() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

�

p;q

(�) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
�(�) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



i;j

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
d

�

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
x

i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
�

i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
�(; ') . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
�

�

i;j

(�; ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
'



() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
 



() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66


