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Abstract. Sharp convergence estimates have been derived in recent years for gradient-type

eigensolvers for large and sparse symmetric matrices or matrix pairs. An extension of these
estimates to the corresponding block iterative methods can be achieved by applying a similar
analysis to an embedded vector iteration. Although the resulting estimates are also sharp

in the sense that they are not improvable without further assumptions, they cannot reflect
the well-known cluster robustness of block eigensolvers. In the present paper, we analyze the
cluster robustness of the preconditioned inverse subspace iteration. The main estimate has
a weaker assumption and a simpler form compared to some known cluster robust estimates.

In addition, it is applicable to further block gradient-type eigensolvers such as LOBPCG.
The analysis is based on an orthogonal splitting for the block power method and a geometric
interpretation of preconditioning. As a by-product, a cluster robust Ritz value estimate for
the block power method is improved.

1. Introduction

For large and sparse symmetric matrices or matrix pairs arising from the discretization of
a self-adjoint and elliptic partial differential operator, gradient iterations with respect to the
corresponding Rayleigh quotient can be applied with a proper preconditioning. These iterations
can efficiently solve partial eigenvalue problems, i.e., the approximate computation of small
subsets of the spectrum and the associated invariant subspaces. We consider the generalized
eigenvalue problem for the pair (A,M) of symmetric and positive definite matrices A,M ∈ R

n×n

with the eigenvalues λ1 ≤ · · · ≤ λn. The computation of its smallest eigenvalue amounts to a
minimization of the Rayleigh quotient

(1.1) ρ : Rn\{0} → R, ρ(x) =
xTAx

xTMx
.

A straightforward method for this minimization is the gradient iteration

x(ℓ+1) = x(ℓ) − ω∇ρ(x(ℓ)).

In order to make the gradient iteration more efficient, approximate inverses T ≈ A−1, called
preconditioners, can be used to form an improved descent direction −T ∇ρ(x(ℓ)) [4]. A simple
example is the preconditioned inverse iteration [9]

(1.2) x(ℓ+1) = x(ℓ) − Tr(ℓ) with r(ℓ) = Ax(ℓ) − ρ(x(ℓ))Mx(ℓ)

since the gradient ∇ρ(x(ℓ)) is collinear to the residual r(ℓ). Although the step size in (1.2) is
constant, the convergence of (1.2) can be guaranteed if the constraint ‖I −TA‖A ≤ γ < 1 (with
the identity matrix I ∈ R

n×n) is satisfied. In the case that ρ(x(ℓ)) belongs to an eigenvalue
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interval (λi, λi+1), the estimate

(1.3)
ρ(x(ℓ+1))− λi

λi+1 − ρ(x(ℓ+1))
≤ σ2

i

ρ(x(ℓ))− λi

λi+1 − ρ(x(ℓ))
with σi = γ + (1− γ)

λi

λi+1

from [9, Theorems 1 and 4] is applicable. Convergence estimates with the structure of (1.3) have
been derived in the analyses of various gradient-type eigensolvers with individual convergence
factors σi; see [7, 14, 13]. The inequality in such estimates turns into an equality in certain
limit cases, which means that the estimates cannot be improved without further assumptions.
Therefore these estimates are considered to be sharp.

In practice, these gradient-type eigensolvers are often implemented in a block form which
allows a simultaneous approximation of several of the smallest eigenvalues [2]. For example, the
vector iterates in (1.2) can be replaced by s-dimensional subspace iterates. The resulting block
iteration is the preconditioned inverse subspace iteration

(1.4) span{X(ℓ+1)} = span{X(ℓ) − TR(ℓ)} with R(ℓ) = AX(ℓ) −MX(ℓ)Θ̂(ℓ).

Therein the diagonal entries of the diagonal matrix Θ̂(ℓ) are the Ritz values of (A,M) in the
current subspace span{X(ℓ)}. The columns of the basis matrix X(ℓ) are given by the corre-
sponding M -orthonormal Ritz vectors, i.e., (X(ℓ))TMX(ℓ) = Is ∈ R

s×s (identity matrix) and

(X(ℓ))TAX(ℓ) = Θ̂(ℓ). From another point of view, the columns of X(ℓ) − TR(ℓ) are just the
one-step results of (1.2) applied to the Ritz vectors in span{X(ℓ)}. However, this argument
only allows us to analyze the change of the smallest Ritz value by a direct application of (1.3).
For the other Ritz values, one can start with the Ritz vectors in span{X(ℓ+1)} and combine
them with certain auxiliary vectors from span{X(ℓ)} within an iteration similar to (1.2); cf. the
block extension of a strictly sharp variant of (1.3) in [11, Section 3]. The results from [11] can
be modified in order to generalize (1.3). Denoting the j-th Ritz values (in ascending order) in

the consecutive subspace iterates span{X(ℓ)}, span{X(ℓ+1)} by ϑ
(ℓ)
j , ϑ

(ℓ+1)
j , it holds in the case

ϑ
(ℓ)
j ∈ (λi, λi+1) that

(1.5)
ϑ
(ℓ+1)
j − λi

λi+1 − ϑ
(ℓ+1)
j

≤ σ2
i

ϑ
(ℓ)
j − λi

λi+1 − ϑ
(ℓ)
j

with σi = γ + (1− γ)
λi

λi+1
.

The estimate (1.5) preserves the sharpness of (1.3). In the corresponding limit case, the Ritz

values in span{X(ℓ)} other than ϑ
(ℓ)
j can be set equal to eigenvalues, without contradicting the

assumption ϑ
(ℓ)
j ∈ (λi, λi+1). An evident drawback of (1.5) is that it is not suitable for interpret-

ing the well-known cluster robustness of block eigensolvers (also called subspace eigensolvers).
If the eigenvalues λi, λi+1 belong to a cluster (e.g. due to the approximation of a multiple
eigenvalue of the underlying operator eigenproblem), the convergence factor σi in (1.5) is close
to 1 and thus cannot predict a fast minimization of the j-th Ritz value. Nevertheless, a fast
minimization can practically be realized by setting the dimension of subspace iterates larger
than the number of clustered eigenvalues.

An older and improvable estimate of the block iteration (1.4) (in an equivalent form for
standard eigenvalue problems) in [3, Theorem 2.1] succeeds in describing the cluster robustness
with the convergence factor γ + (1− γ)λj/λs+1 for the j-th Ritz value. However, this estimate
has a more complex form than (1.5) and requires a strong assumption on angles between the
initial subspace and the target eigenvectors. The suggested tolerance in the assumption contains

the factor
(
maxi=1,...,s

(
(λi+1 + λi)/(λi+1 − λi)

))−2
which is very small if the first s eigenvalues

are clustered. Thus the initial subspace needs to be a very accurate approximation of the target
invariant subspace. In other words, this estimate is applicable only if (1.4) is very close to

its convergence. Cluster robust estimates for (1.4) under the weaker assumption ϑ
(0)
s < λs+1

can be derived by using [18, Theorems 2 and 3] and have the form
∑s

j=1

(
λ−1
j − (ϑ

(ℓ+1)
j )−1

)
≤
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τ
∑s

j=1

(
λ−1
j − (ϑ

(ℓ)
j )−1

)
according to a reciprocal representation of the eigenvalue problem.

Therein the convergence factor τ has to be defined in a complicated form requiring the Ritz

value ϑ
(ℓ)
s together with certain angles between span{X(ℓ)} and the target invariant subspace.

In contrast to this, the convergence factor σi in (1.5) only depends on two eigenvalues λi, λi+1

and the quality parameter γ of the preconditioner. Moreover, the estimates based on [18] do not
reflect the possibly distinct convergence rates of the Ritz values such as λj/λs+1.

1.1. New cluster robust estimates. These considerations lead us to the idea of developing a
new estimate for (1.4) which can interpret the cluster robustness under a suitable assumption and
in a simple form. For this purpose, we consider first the special version of (1.4) with T = A−1,
i.e. the inverse subspace iteration

(1.6) span{X(ℓ+1)} = span{A−1MX(ℓ)Θ̂(ℓ)} = span{A−1MX(ℓ)},
for the matrix pair (A,M). By using a reciprocal representation, (1.6) corresponds to the block
power method for which some cluster robust estimates on the angle between a target eigenvector
and the subspace iterate are presented by Rutishauser [20, Section 2] and Parlett [19, Section
14.4]. These estimates can be applied to (1.6) after simple reformulation:

∠A

(
wj , X

(ℓ)
)
= O

(
(λj/λs+1)

ℓ
)

and tan∠A

(
wj , X

(ℓ)
)
≤
(

λj

λs+1

)ℓ

tan∠A

(
W,X(0)

)

for an eigenvector wj associated with the j-th eigenvalue λj , j ∈ {1, . . . , s} and the invariant
subspace span{W} associated with the first s eigenvalues. The angles denoted by ∠A are defined
with respect to the inner product induced by A. However, the angle ∠A(wj , X

(ℓ)) generally
differs from the angle between wj and a Ritz vector so that these traditional estimates cannot
directly imply estimates on Ritz vectors or Ritz values. An improvement has been made by
Andrew Knyazev within the convergence analysis of an abstract block iteration in [6, 7]. The
improvement includes a cluster robust Ritz value estimate which can be reformulated as

ϑ
(ℓ)
j − λj

λn − ϑ
(ℓ)
j

≤ λj

λn

(
λj

λs+1

)2ℓ

tan2 ∠A

(
W,X(0)

)
.

In addition, combining this with the estimate [7, (2.7)] on the relation between Ritz vectors
and Ritz values implies a Ritz vector estimate. We aim to achieve a further improvement by
deriving intermediate estimates in terms of Ritz values instead of angles. The improved estimate
can be modified in the general case T ≈ A−1 by using an alternative quality parameter γ̃ of
the preconditioner based on the geometric arguments from [10, 1]. Therein we consider an em-
bedded vector iteration within the orthogonal complement of an invariant subspace associated
with certain interior eigenvalues. The parameter γ̃ is introduced in an assumption depending
on auxiliary vectors concerning the inverse subspace iteration. This approach is inspired by the
work [17] of Yvan Notay on an inexact Rayleigh quotient iteration and leads to an intermedi-
ate estimate for the embedded vector iteration. The estimate is similar to (1.3), namely, for
estimating the j-th Ritz values, one obtains

ρ(x(ℓ+1))− λi−s+j

λi+1 − ρ(x(ℓ+1))
≤
(
γ̃ + (1− γ̃)

λi−s+j

λi+1

)2
ρ(x(ℓ))− λi−s+j

λi+1 − ρ(x(ℓ))

for auxiliary vectors x(ℓ) and x(ℓ+1) provided that ρ(x(ℓ)) is located between λi−s+j and λi+1 for
a certain i ∈ {s, . . . , n− 1}. The interior eigenvalues between λi−s+j and λi+1 are skipped. (In
the special case i= s, these eigenvalues are between λj and λs+1.) We prove this intermediate
estimate in an equivalent form in Lemma 3.1. Furthermore, a multistep estimate

ϑ
(ℓ)
j − λi−s+j

λi+1 − ϑ
(ℓ)
j

≤
(
γ̃ + (1− γ̃)

λi−s+j

λi+1

)2ℓ
ϑ
(0)
s − λi−s+j

λi+1 − ϑ
(0)
s
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without auxiliary vectors is achieved in Theorem 3.5. The bound uses the s-th Ritz value ϑ
(0)
s

and can thus be looser than that from the multistep form of (1.5) in the first several steps, but
it is significantly better in total because of the possibly much smaller convergence factor based
on the ratio λi−s+j/λi+1 compared to λi/λi+1; see the numerical experiments in section 4.

1.2. Notation. The generalized eigenvalue problem Ax = λMx can be represented by a recipro-
cal form, namely, by the standard eigenvalue problem Hy = λ−1y with H =A−1/2MA−1/2 and
y=A1/2x. This representation can considerably simplify the convergence analysis; cf. [16, Sec-
tion 1.3]. We remark that the auxiliary matrices A−1/2 and A1/2 do not occur in our convergence
estimates and are thus not required in the corresponding numerical experiments. Additionally,
it holds for the Rayleigh quotient (1.1) and the Rayleigh quotient

(1.7) µ : Rn\{0} → R, µ(y) =
yTHy

yT y

that ρ(x) =
(
µ(y)

)−1
. For the preconditioned inverse iteration (1.2), the reformulation

A1/2x(ℓ+1) = A1/2x(ℓ) −A1/2TA1/2
(
A1/2x(ℓ) − ρ(x(ℓ))A−1/2MA−1/2A1/2x(ℓ)

)

together with N = A1/2TA1/2 results in the representation

(1.8) y(ℓ+1) = y(ℓ) −N
(
y(ℓ) −

(
µ(y(ℓ))

)−1
Hy(ℓ)

)
.

Similarly, the preconditioned inverse subspace iteration (1.4) can be represented by

(1.9) span{Y (ℓ+1)} = span{Y (ℓ) −N
(
Y (ℓ) −HY (ℓ)(Θ(ℓ))−1

)
}

with Y (ℓ) = A1/2X(ℓ)(Θ̂(ℓ))−1/2 and Θ(ℓ) = (Θ̂(ℓ))−1. Therein the columns of Y (ℓ) are or-
thonormal Ritz vectors of H since (Y (ℓ))TY (ℓ) is the identity matrix Is and (Y (ℓ))THY (ℓ) is a
diagonal matrix:

(Y (ℓ))TY (ℓ) = (Θ̂(ℓ))−1/2 (X(ℓ))TAX(ℓ)

︸ ︷︷ ︸
=Θ̂(ℓ)

(Θ̂(ℓ))−1/2 = Is,

(Y (ℓ))THY (ℓ) = (Θ̂(ℓ))−1/2 (X(ℓ))TMX(ℓ)

︸ ︷︷ ︸
=Is

(Θ̂(ℓ))−1/2 = (Θ̂(ℓ))−1 = Θ(ℓ).

Correspondingly, Θ(ℓ) is a diagonal matrix with the Ritz values of H as the diagonal entries.
The matrix N in (1.8) and (1.9) represents the preconditioner T and is assumed to satisfy the
constraint ‖I −N‖2 ≤ γ < 1 according to

‖I − TA‖A = ‖A1/2(I − TA)A−1/2‖2 = ‖I −A1/2TA1/2‖2 = ‖I −N‖2.
This allows us to reformulate the estimates (1.3), (1.5) in the following lemma.

Lemma 1.1. Let µ1 ≥ · · · ≥ µn be the eigenvalues of the symmetric and positive definite matrix
H ∈ R

n×n. The corresponding Rayleigh quotient is defined by (1.7). Let the matrix N in the
iterations (1.8) and (1.9) satisfy ‖I −N‖2 ≤ γ < 1.

(a) For (1.8), it holds in the case µ(y(ℓ)) ∈ (µi+1, µi) that

(1.10)
µi − µ(y(ℓ+1))

µ(y(ℓ+1))− µi+1
≤ σ2

i

µi − µ(y(ℓ))

µ(y(ℓ))− µi+1
with σi = γ + (1− γ)

µi+1

µi
.

(b) Let θ
(ℓ)
j , θ

(ℓ+1)
j be the j-th Ritz values in descending order of H in span{Y (ℓ)},

span{Y (ℓ+1)}. Then it holds for (1.9) in the case θ
(ℓ)
j ∈ (µi+1, µi) that

(1.11)
µi − θ

(ℓ+1)
j

θ
(ℓ+1)
j − µi+1

≤ σ2
i

µi − θ
(ℓ)
j

θ
(ℓ)
j − µi+1

with σi = γ + (1− γ)
µi+1

µi
.
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The reformulation simply uses the fact that the eigenvalues and the Ritz values of (A,M)
are the reciprocals of those of H. For a self-contained proof of (1.10) one can use the succinct
analysis from [1] after a simple conversion of the eigenvalue notation µ1 > · · · > µm in [1] (i.e.,
the multiple eigenvalues are counted only once) to that in Lemma 1.1. Some arguments from
[11, 1] can be combined and applied to a self-contained proof of (1.11). Furthermore, these
arguments are used below in subsection 3.1 for deriving the new estimate.

1.3. Aim and overview. In this paper, we analyze the cluster robustness of block gradient-
type eigensolvers. New estimates are derived for the preconditioned inverse subspace iteration
(1.4) by combing an orthogonal splitting for the block power method and a geometric interpreta-
tion of preconditioning. These two tools are implemented concerning the symmetric and positive
definite matrix H with eigenvalues µ1 ≥ · · · ≥ µn introduced in subsection 1.2. The orthogonal
splitting makes use of the intersection of the initial subspace and the invariant subspace asso-
ciated with the eigenvalues µ1, . . . , µi−s+j , µi+1, . . . , µn for a certain index i ∈ {s, . . . , n − 1}.
The orthogonality of this intersection to the eigenvectors associated with the interior eigenvalues
µi−s+j+1, . . . , µi is preserved while we multiply it by H. These eigenvalues are thus skipped in
the further analysis so that the cluster robust convergence factor µi+1/µi−s+j is achieved; see
subsection 2.2 for more details. The geometric interpretation of preconditioning compares the
preconditioned inverse iteration with the power method ynew = Hy. The new iterates can be
analyzed within a ball centred at Hy or within a cone around span{Hy}; cf. [10, 1]. We utilize
these tools in order to modify a description of (1.4) from [11] as an important step of our new
analysis; see subsection 3.1 for more details. The resulting main estimate has a similar simple
form as (1.5) but is much more accurate in the case of clustered eigenvalues. Additionally, the
new results serve as a supplement to the convergence analysis of further block gradient-type
eigensolvers.

The remaining part of the paper is organized as follows. In section 2, we consider the inverse
subspace iteration (1.6). This is a special version of (1.4) with T = A−1 and corresponds to the
block power method by using the reciprocal representation in subsection 1.2. The convergence
analysis of an abstract block iteration by Knyazev [6, 7] is directly applicable and results in
typical cluster robust estimates. However, the central part of this analysis works with angles
between subspaces and cannot easily be applied to the case of inexact preconditioning. Thus
we derive a further cluster robust estimate in terms of Ritz values and generalize it in section
3 to preconditioned iterations. Therein the perturbation of some auxiliary vectors caused by
inexact preconditioning is described with an alternative quality parameter so that the proof
techniques from [10, 1] can be used. The main result is a multistep estimate for the precondi-
tioned inverse subspace iteration (1.4) under a proper assumption and can easily be compared
with the multistep form of (1.5). In section 4, numerical experiments with large scale matrices
from an adaptive finite element discretization of the Laplacian eigenvalue problem demonstrate
the benefit of the new results.

2. Cluster robustness of the block power method

We start with a special version of the preconditioned inverse subspace iteration (1.4). By set-
tingN = I in its reciprocal representation (1.9), we obtain span{Y (ℓ+1)} = span{HY (ℓ)(Θ(ℓ))−1}
= span{HY (ℓ)}, i.e. the block power method for the standard eigenvalue problem of H, or the
reciprocal representation of the inverse subspace iteration (1.6).

2.1. Convergence estimates by Andrew Knyazev. The block power method is also a special
version of an abstract block iteration which has been thoroughly analyzed by Knyazev [6, 7]. We
select two typical cluster robust estimates [7, (2.18), (2.20)] and reformulate them with respect
to the block power method.



6 M. ZHOU AND K. NEYMEYR

Lemma 2.1. Let µ1 ≥ · · · ≥ µs > µs+1 ≥ · · · ≥ µn be the eigenvalues of the symmetric
and positive definite matrix H ∈ R

n×n and let z1, . . . , zs, zs+1, . . . , zn be the associated or-
thonormal eigenvectors. We consider the block power method span{Y (ℓ+1)} = span{HY (ℓ)}
with dim(span{Y (0)}) = s and denote by ∠(U, V ) the Euclidean angle between two subspaces
span{U}, span{V }. If ∠

(
Y (0), Z

)
< π/2 for Z = [z1, . . . , zs], then it holds that

(2.1) tan∠
(
Y (ℓ), Z

)
≤
(
µs+1

µs

)ℓ

tan∠
(
Y (0), Z

)
.

Furthermore, denoting by θ
(ℓ)
j the j-th Ritz value in descending order of H in span{Y (ℓ)}, it

holds that

(2.2)
µj − θ

(ℓ)
j

θ
(ℓ)
j − µn

≤
(
µs+1

µj

)2ℓ

tan2 ∠
(
Y (0), Z

)
.

Remark 2.2. In [6, 7], a generalized eigenvalue problem is considered and the angles are defined
with respect to the inner product induced by a symmetric and positive definite matrix. The
target eigenvalues are taken to be simple. In spite of these different settings, the analysis in
[6, 7] is applicable to the proof of Lemma 2.1 after slight reformulation. The probably more
natural setting with only one strict inequality µs > µs+1 dates back to the analysis of the
inverse subspace iteration by Parlett [19, Section 14.4].

2.2. Auxiliary vectors. The estimates [7, (2.18), (2.20)] can be proved by combining several
valuable arguments from [6] (in Russian). Next, we recapitulate two arguments in equivalent
forms together with some auxiliary vectors which are also used for deriving our new estimates.
For the reader’s convenience, we prove these arguments in a more direct and elementary way.

Lemma 2.3. With the settings from Lemma 2.1 there exist unique vectors yk ∈ span{Y (0)},
k ∈ {1, . . . , s} satisfying zTi yk = δik for i ∈ {1, . . . , s}. Furthermore, the matrix Yj = [y1, . . . , yj ],
j ∈ {1, . . . , s} has the rank j, and it holds for Zj = [z1, . . . , zj ] that (cf. [6, (2.3.11)])

(2.3) tan∠
(
HℓYj , Zj

)
≤
(
µs+1

µj

)ℓ

tan∠
(
Yj , Zj

)
.

Proof. The condition zTi yk = δik together with the representation yk = Y (0)gk leads to the linear
system ZTY (0)gk = ek with Z = [z1, . . . , zs] and the k-th standard basis vector ek in R

s. The
assumption ∠

(
Y (0), Z

)
< π/2 from Lemma 2.1 ensures that ZTY (0) is invertible

(
since otherwise

there exists a nonzero vector g ∈ R
s with ZTY (0)g = 0, i.e., span{Y (0)} contains an vector Y (0)g

which is orthogonal to span{Z}
)
. Thus the solution gk is unique as well as yk. These auxiliary

vectors have already been suggested by Rutishauser in [20].
The resulting representation yk = Y (0)(ZTY (0))−1ek shows that

Yj = Y (0)(ZTY (0))−1[e1, . . . , ej ]

and thus Yj evidently has the rank j. In order to prove (2.3), we use the fact span{HℓYj} =
Hℓspan{Yj} so that

tan∠
(
HℓYj , Zj

)
= max

w∈span{HℓYj}
tan∠

(
w, Zj

)
= max

y∈span{Yj}
tan∠

(
Hℓy, Zj

)
.

Then we consider a (nonunique) y∗ ∈ span{Yj} which maximizes tan∠
(
Hℓy, Zj

)
. The condition

zTi yk = δik implies that y∗ is orthogonal to the eigenvectors zj+1, . . . , zs in the case j < s. Thus

y∗ can be represented by y∗ =
∑j

i=1 αizi +
∑n

i=s+1 αizi with certain coefficients αi ∈ R, also in

the case j = s. Consequently, it holds that Hℓy∗ =
∑j

i=1 µ
ℓ
iαizi +

∑n
i=s+1 µ

ℓ
iαizi and

tan2 ∠
(
Hℓy∗, Zj

)
=

∑n
i=s+1 µ

2ℓ
i α2

i∑j
i=1 µ

2ℓ
i α2

i

≤
µ2ℓ
s+1

∑n
i=s+1 α

2
i

µ2ℓ
j

∑j
i=1 α

2
i

=

(
µs+1

µj

)2ℓ

tan2 ∠
(
y∗, Zj

)
.
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Combining this with

tan∠
(
Hℓy∗, Zj

)
= tan∠

(
HℓYj , Zj

)
, tan∠

(
y∗, Zj

)
≤ tan∠

(
Yj , Zj

)

and using the positivity of the concerned tangent values and eigenvalues yield (2.3). �

The special version of (2.3) for j = s coincides with the estimate (2.1) in Lemma 2.1. Addi-
tionally, (2.3) can be extended to the estimate (2.2) by using the following argument.

Lemma 2.4. With the settings from Lemma 2.1 and Lemma 2.3 it holds that (cf. [6, (2.2.42)]
in terms of tangent values)

(2.4) cos2 ∠
(
HℓYj , Zj

)
≤

θ
(ℓ)
j − µn

µj − µn
.

Proof. We denote by β the smallest Ritz value of H in span{HℓYj}. Since Yj is a submatrix

of Y (0) with the rank j (and H has full rank), span{HℓYj} is a j-dimensional subspace within

span{HℓY (0)} = span{Y (ℓ)}. Then we have µj ≥ θ
(ℓ)
j ≥ β by using the Courant-Fischer

principles. Thus (2.4) can be derived from the intermediate estimate

(2.5) cos2 ∠
(
HℓYj , Zj

)
≤ β − µn

µj − µn
.

Evidently, (2.5) is trivial in the case cos2 ∠
(
HℓYj , Zj

)
= 0. In the nontrivial case, we use a

Ritz vector w in span{HℓYj} associated with β. Then µ(w) = β, and 0 < cos2 ∠
(
HℓYj , Zj

)
≤

cos2 ∠
(
w, Zj

)
so that w is not orthogonal to span{Zj} and thus has a nonzero orthogonal

projection z to span{Zj}. In addition, it holds that

cos2 ∠
(
HℓYj , Zj

)
≤ cos2 ∠

(
w, Zj

)
= cos2 ∠

(
w, z

)
.

Since z ∈ span{Zj}, and span{Zj} is an invariant subspace with respect to H, we have Hz ∈
span{Zj}. Thus the orthogonality w − z ⊥ span{Zj} implies that

(w − z)T z = 0, (w − z)THz = 0 and (w − z)T (H − µnI)z = 0.

Consequently, it holds that wT z = ‖z‖22 and

wT (H − µnI)w = zT (H − µnI)z + (w − z)T (H − µnI)(w − z) ≥ zT (H − µnI)z > 0.

Therein the first inequality follows from the positive semidefiniteness of H−µnI, and the second
inequality is based on the fact that z is not an eigenvector associated with µn because of z ∈
span{Zj} and µj ≥ µs > µs+1 ≥ µn. Summarizing the above gives

cos2 ∠
(
HℓYj , Zj

)
≤ cos2 ∠

(
w, z

)
=

(
wT z

‖w‖2‖z‖2

)2

=
‖z‖22
‖w‖22

≤ ‖z‖22
zT (H − µnI)z

wT (H − µnI)w

‖w‖22
=
(
µ(z)− µn

)−1(
µ(w)− µn

)

which shows (2.5) by using µ(w) = β and µ(z) ≥ µj (according to z ∈ span{Zj}). �

Remark 2.5. Two equivalent versions of (2.4) can immediately be derived by trigonometric
conversions:

(2.6) sin2 ∠
(
HℓYj , Zj

)
≥

µj − θ
(ℓ)
j

µj − µn
, tan2 ∠

(
HℓYj , Zj

)
≥

µj − θ
(ℓ)
j

θ
(ℓ)
j − µn

.

Additionally, for each y ∈ span{Yj} and its orthogonal projection ỹ to span{Zj}, we have

y − ỹ ⊥ span{Zj}, y ⊥ span{zj+1, . . . , zs}, ỹ ⊥ span{zj+1, . . . , zs}
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so that y − ỹ is orthogonal to span{Zj} + span{zj+1, . . . , zs} = span{Z}. Thus ỹ is also the
orthogonal projection of y to span{Z}, and

tan∠
(
Yj , Zj

)
= max

y∈span{Yj}
tan∠

(
y, Zj

)
= max

y∈span{Yj}
tan∠

(
y, Z

)

≤ max
y∈span{Y (0)}

tan∠
(
y, Z

)
= tan∠

(
Y (0), Z

)
.

Combining this with (2.3) and the tangent estimate in (2.6) (cf. [6, (2.3.12)]) yields the estimate

(2.2) in Lemma 2.1. Similarly, the sine estimate in (2.6) can be extended to (µj−θ
(ℓ)
j )/(µj−µn) ≤

sin2 ∠
(
Y (ℓ), Z

)
. This corresponds in the special case ℓ = 0 to a well-known relationship between

Ritz values and subspace angles where no iterative methods are considered; see [5, Theorem 1]
or its slightly weaker variant [3, Lemma 3.1].

2.3. New estimates. As seen in the previous subsection, the central part of the derivation of
the cluster robust estimates in Lemma 2.1 or [7, (2.18), (2.20)] is a tangent estimate like (2.3).
For the purpose of a generalized analysis for preconditioned iterations, however, (2.3) and the
underlying proof technique cannot easily be used since the orthogonality between the auxiliary
vectors and the eigenvectors zj+1, . . . , zs does not need to be preserved under preconditioning.
Indeed, the known sharp estimates for preconditioned iterations from [11, 9] are not in terms of
angles but in terms of Ritz values. This consideration leads to the following new cluster robust
estimates in Theorems 2.6, 2.8.

Theorem 2.6. Let µ1 ≥ · · · ≥ µn be the eigenvalues of the symmetric and positive definite
matrix H ∈ R

n×n. We consider the block power method span{Y (ℓ+1)} = span{HY (ℓ)} with

dim(span{Y (0)}) = s and denote by θ
(ℓ)
j the j-th Ritz value in descending order of H in the

subspace iterate span{Y (ℓ)}. If θ
(0)
s > µs+1, then it holds that

(2.7)
µj − θ

(ℓ)
j

θ
(ℓ)
j − µs+1

≤
(
µs+1

µj

)2ℓ
µj − θ

(0)
s

θ
(0)
s − µs+1

.

In comparison to Lemma 2.1, Theorem 2.6 does not depend on the invariant subspace Z =

[z1, . . . , zs]. The assumption θ
(0)
s > µs+1 ensures µs > µs+1 because of µs ≥ θ

(0)
s by the Courant-

Fischer principles. The estimate (2.7) contains only eigenvalues and Ritz values. It is not a direct
improvement of (2.2) due to their different convergence measures. However, a coarser variant

of (2.7) can be proved by extracting an upper bound of (µj − θ
(0)
s )/(θ

(0)
s − µs+1) from the

trivial version of (2.2) with ℓ = 0 and j = s. The essential advantage of using (2.7) is that its
extension to the preconditioned case can preserve the orthogonality between auxiliary vectors and
eigenvectors. In the derivation of (2.7) we use the auxiliary vectors introduced in subsection 2.2,
and prove first a similar estimate concerning Ritz values in subspaces span{Yj} ⊆ span{Y (0)}.

Lemma 2.7. With the settings from Lemma 2.1 and Lemma 2.3 let θ̃j be the smallest Ritz value

of H in span{Yj}. Then θ̃j ≥ θ
(0)
s , and, if θ

(0)
s > µs+1, it holds that

(2.8)
µj − θ

(ℓ)
j

θ
(ℓ)
j − µs+1

≤
(
µs+1

µj

)2ℓ
µj − θ̃j

θ̃j − µs+1

.

Proof. The inequality θ̃j ≥ θ
(0)
s follows from the relation span{Yj} ⊆ span{Y (0)} and the fact

that θ̃j , θ
(0)
s are the smallest Ritz values in span{Yj}, span{Y (0)}, respectively.

For the proof of (2.8) we use, similarly to the proof of Lemma 2.4, the smallest Ritz value

β of H in span{HℓYj}. Then the inequality θ
(ℓ)
j ≥ β (based on the Courant-Fischer principles)

and the monotonicity of the function
(
µj −∗

)/(
∗−µs+1

)
on the interval

(
µs+1, µj

]
allow us to
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derive (2.8) from the intermediate estimate

(2.9)
µj − β

β − µs+1
≤
(
µs+1

µj

)2ℓ
µj − θ̃j

θ̃j − µs+1

.

We prove (2.9) by using a Ritz vector of H in span{HℓYj} associated with β. This vector can
be represented by HℓYjc with a coefficient vector c ∈ R

j\{0}. We consider further the vector
Yjc and denote it by y so that

(2.10) y ∈ span{Yj}, µ(y) ≥ θ̃j ≥ θ(0)s > µs+1, β = µ(HℓYjc) = µ(Hℓy).

Because of y ∈ span{Yj} = span{y1, . . . , yj} and the condition zTi yk = δik from Lemma 2.3,
the vector y is orthogonal to the eigenvectors zj+1, . . . , zs in the case j < s. Thus y can be
represented by

y = u+ v with u =

j∑

i=1

wi, v =
n∑

i=s+1

wi, wi ∈ span{zi},

also in the case j = s. Therein u and v are the orthogonal projections of y to the invariant
subspaces span{z1, . . . , zj} and span{zs+1, . . . , zn} so that uTHv = uT v = 0 and

µ(y) =
(u+ v)TH(u+ v)

(u+ v)T (u+ v)
=

uTHu+ vTHv

uTu+ vT v
=

µ(u)uTu+ µ(v) vT v

uTu+ vT v
.

The vector u cannot be zero, since otherwise y belongs to span{zs+1, . . . , zn} so that µ(y) ≤ µs+1

which contradicts the inequalities in (2.10). Then we have

µ(u)− µ(y)

µ(y)− µ(v)
=

vT v

uTu
=

‖v‖22
‖u‖22

.

In addition, an analogous equation for the partially scaled vector ỹ = µℓ
ju+ µℓ

s+1v yields

(2.11)
µ(u)− µ(ỹ)

µ(ỹ)− µ(v)
=

µ(µℓ
ju)− µ(ỹ)

µ(ỹ)− µ(µℓ
s+1v)

=
‖µℓ

s+1v‖22
‖µℓ

ju‖22
=

(
µs+1

µj

)2ℓ
µ(u)− µ(y)

µ(y)− µ(v)
.

Furthermore, the inequality µ(Hℓy) ≥ µ(ỹ) follows from the coefficient comparison

Hℓy = Hℓu+Hℓv =

j∑

i=1

µℓ
i︸︷︷︸

≥µℓ
j

wi +

n∑

i=s+1

µℓ
i︸︷︷︸

≤µℓ
s+1

wi

analogously to [6, Lemma 2.3.2] and [16, Lemma 3.2]. Combining µ(Hℓy) ≥ µ(ỹ) with the known
relations

µ(u) ≥ µj ≥ θ
(ℓ)
j ≥ β = µ(Hℓy), µ(y) ≥ θ̃j ≥ θ(0)s > µs+1 ≥ µ(v)

and (2.11) yields µ(u) ≥ µj ≥ β ≥ µ(ỹ) ≥ µ(y) ≥ θ̃j > µs+1 ≥ µ(v) . More precisely,

µ(u)− β

β − µ(v)
≤
(
µs+1

µj

)2ℓ
µ(u)− θ̃j

θ̃j − µ(v)

follows from (2.11) by using the monotonicity of the function
(
µ(u) − ∗

)/(
∗ −µ(v)

)
on the

interval
(
µ(v), µ(u)

]
. The subsequent extension

(
µj − β

β − µs+1

)(
µj − θ̃j

θ̃j − µs+1

)−1

=

(
µj − β

µj − θ̃j

)(
θ̃j − µs+1

β − µs+1

)

≤
(

µ(u)− β

µ(u)− θ̃j

)(
θ̃j − µ(v)

β − µ(v)

)
=

(
µ(u)− β

β − µ(v)

)(
µ(u)− θ̃j

θ̃j − µ(v)

)−1

≤
(
µs+1

µj

)2ℓ
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results in (2.9). �

The proof of Theorem 2.6 follows immediately from Lemma 2.7 and is given next.

Proof of Theorem 2.6. The settings from Theorem 2.6 are compatible with those used in Lemma

2.7. In particular, the assumption θ
(0)
s > µs+1 ensures ∠

(
Y (0), Z

)
< π/2, since otherwise

span{Y (0)} contains a nonzero vector y which is orthogonal to span{Z} so that θ
(0)
s ≤ µ(y) ≤

µs+1. Thus the results of Lemma 2.7 are applicable. The inequality θ̃j ≥ θ
(0)
s and the monotonic-

ity of
(
µj −∗

)/(
∗−µs+1

)
on
(
µs+1, µj

]
show that

(
µj − θ̃j

)/(
θ̃j − µs+1

)
≤
(
µj − θ

(0)
s

)/(
θ
(0)
s −

µs+1

)
. Combining this with (2.8) yields (2.7). �

We remark that our analysis in Lemma 2.7 and Theorem 2.6 can be applied to the abstract
block iteration from [6, 7] after slight reformulation. The resulting pendant of (2.7) generalizes
the estimate [7, (2.22)] which corresponds to the special case j = s. However, the Ritz value

θ
(0)
s in the bound in such a generalization cannot be replaced by θ

(0)
j for the purpose of a tighter

bound; cf. the numerical example concerning the restarted block-Lanczos method in [22, Section
3, Figure 1].

Furthermore, the estimate (2.7) can be generalized to arbitrarily located θ
(0)
s where the aux-

iliary subspaces like span{Yj} can be constructed by subspace intersections.

Theorem 2.8. Let µ1 ≥ · · · ≥ µn be the eigenvalues of the symmetric and positive definite
matrix H ∈ R

n×n. We consider the block power method span{Y (ℓ+1)} = span{HY (ℓ)} with

dim(span{Y (0)}) = s and denote by θ
(ℓ)
j the j-th Ritz value in descending order of H in the

subspace iterate span{Y (ℓ)}. If µi ≥ θ
(0)
s > µi+1 for a certain i ∈ {s, . . . , n − 1}, then it holds

that

(2.12)
µi−s+j − θ

(ℓ)
j

θ
(ℓ)
j − µi+1

≤
(

µi+1

µi−s+j

)2ℓ
µi−s+j − θ

(0)
s

θ
(0)
s − µi+1

.

Proof. The estimate (2.12) is trivial in the case θ
(ℓ)
j ≥ µi−s+j (since the left-hand side is then

nonpositive). In the nontrivial case θ
(ℓ)
j < µi−s+j , we use orthonormal eigenvectors z1, . . . , zn of

H associated with the eigenvalues µ1 ≥ · · · ≥ µn. Then the intersection of Y(0) = span{Y (0)}
and the invariant subspace Z̃ = span{z1, . . . , zi−s+j , zi+1, . . . , zn} has at least the dimension j
because of

(2.13) dim
(
Y(0) ∩ Z̃

)
= dimY(0) + dim Z̃ − dim

(
Y(0) + Z̃

)
︸ ︷︷ ︸

≤dimRn=n

≥ s+ (n− s+ j)− n = j.

Thus there exists a j-dimensional subspace Ỹ ⊆
(
Y(0)∩Z̃

)
. We denote by θ̃, β̃ the smallest Ritz

values of H in Ỹ, HℓỸ, respectively. Then the Courant-Fischer principles yield

θ̃ ≥ θ(0)s > µi+1 and β̃ ≤ θ
(ℓ)
j < µi−s+j

because of Ỹ ⊆ Y(0) = span{Y (0)} and HℓỸ ⊆ span{HℓY (0)} = span{Y (ℓ)}. Therein we

consider θ̃, θ
(0)
s as the smallest Ritz values and β̃, θ

(ℓ)
j as the j-th Ritz values in descending

order. Subsequently, the estimate (2.12) follows from the intermediate estimate

(2.14)
µi−s+j − β̃

β̃ − µi+1

≤
(

µi+1

µi−s+j

)2ℓ
µi−s+j − θ̃

θ̃ − µi+1

,

which can be shown analogously to the proof of (2.9), i.e., by using an auxiliary vector y ∈ Ỹ
and its orthogonal projections to span{z1, . . . , zi−s+j} and span{zi+1, . . . , zn}. �
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The estimate (2.12) is independent of angles and can provide a tighter bound compared to
the estimate (2.2); cf. Experiment I in section 4. Moreover, (2.12) is only sharp in the case j = s
where it corresponds to the special version of a sharp estimate from [11] for the preconditioned
inverse subspace iteration. Nevertheless, (2.12) provides an important cluster robust supplement
to the estimates from [11] in the case j < s. We aim to improve (2.12) in future work concerning
sharpness for j < s.

Additionally, we reformulate Theorem 2.8 for analyzing the inverse subspace iteration (1.6)
with respect to the generalized eigenvalue problem Ax = λMx. The reformulation is based on
the substitutions introduced in subsection 1.2.

Theorem 2.9. Let λ1 ≤ · · · ≤ λn be the eigenvalues of the pair (A,M) of symmetric and
positive definite matrices A,M ∈ R

n×n. We consider the inverse subspace iteration (1.6) with

dim(span{X(0)}) = s and denote by ϑ
(ℓ)
j the j-th Ritz value in ascending order of (A,M) in the

subspace iterate span{X(ℓ)}. If λi ≤ ϑ
(0)
s < λi+1 for a certain i ∈ {s, . . . , n − 1}, then it holds

that

(2.15)
ϑ
(ℓ)
j − λi−s+j

λi+1 − ϑ
(ℓ)
j

≤
(
λi−s+j

λi+1

)2ℓ
ϑ
(0)
s − λi−s+j

λi+1 − ϑ
(0)
s

.

3. Cluster robustness of the preconditioned inverse subspace iteration

The goal of this section is to generalize the new estimates from Theorem 2.6 and Theorem
2.8 to the preconditioned case. We consider the preconditioned inverse subspace iteration (1.4)
with respect to its reciprocal representation (1.9).

3.1. Preconditioning. The generalization of the new estimates is partially known, namely, for
j = s, the estimate

(3.1)
µi − θ

(ℓ)
s

θ
(ℓ)
s − µi+1

≤
(
γ + (1− γ)

µi+1

µi

)2ℓ
µi − θ

(0)
s

θ
(0)
s − µi+1

.

can be derived by recursively applying (1.11) with j = s.
For the full generalization, we first review a proof sketch of (1.11) based on the analysis from

[11, 1]. For convenience, we use the simplified formula

(3.2) Y ′ = Y −N(Y −HYΘ−1)

of (1.9) where Y = Y (ℓ) so that span{Y ′} = span{Y (ℓ+1)}. Correspondingly, (1.11) with j = s
has the simplified form

(3.3)
µi − θ′s

θ′s − µi+1
≤
(
γ + (1− γ)

µi+1

µi

)2
µi − θs

θs − µi+1

where θs, θ
′
s are the smallest Ritz values in span{Y }, span{Y ′} and γ comes from the condition

‖I −N‖2 ≤ γ < 1. In the proof one can first show that Y ′ has the full rank s and is thus a basis
matrix. Then a Ritz vector associated with θ′s can be represented by Y ′c with c ∈ R

s\{0}. By
using (3.2), one obtains the vector iteration

Y ′c = Y c−N(Y c−HYΘ−1c).

A further reformulation

HYΘ−1c− Y ′c = (I −N)(HYΘ−1c− Y c)

is necessary in order to apply known estimates for vector iterations such as (1.10). This leads to

(3.4) ‖Hy − Y ′c‖2 ≤ γ ‖Hy − µ(y)y‖2 with y = YΘ−1c,

i.e., Y ′c is contained in a ball corresponding to one step of the iteration (1.8) with y(ℓ) = y =
YΘ−1c. Thus (1.10) is applicable and implies (3.3) by using µ(Y ′c) = θ′s and µ(YΘ−1c) ≥ θs. In
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the case j < s, the same proof technique is applied to a j-dimensional subspace within span{Y }.
The resulting intermediate estimate can be combined with the Courant-Fischer principles so
that (1.11) is shown.

Now we aim to formulate an argument which is similar to (3.4) and allows us to restrict the
analysis from [11, 1] to the orthogonal complement of span{zj+1, . . . , zs}. Therein one has to
overcome the obstacle that the three vectors Y ′c, YΘ−1c and HYΘ−1c generally cannot be
orthogonal to zj+1, . . . , zs at the same time. With this aim in mind, we consider a scaling-
invariant alternative of (3.4), namely,

sin∠(HYΘ−1c, Y ′c) ≤ γ sin∠(HYΘ−1c, YΘ−1c)

which means that Y ′c belongs to a cone around span{HYΘ−1c}; cf. [10, Theorem 2.2]. More-
over, this alternative is compatible with the analysis from [11, 1]. Further, we use the fact
that span{Y ′} would coincide with span{HYΘ−1} = span{HY } in the special case N = I
(correspondingly, the new iterate in (1.4) is an approximate solution of a block linear system
and coincides with the exact solution if T = A−1). Thus, if Y ′c is a Ritz vector in span{Y ′}
associated with the smallest Ritz value, then span{Y ′c} can be regarded as a perturbation of
span{HY d} where HY d is a Ritz vector in span{HY } associated with the smallest Ritz value.
Consequently, the quality of the preconditioner can be measured by

(3.5) sin∠(HY d, Y ′c) ≤ γ̃ sin∠(HY d, Y d), γ̃ ∈ [0, 1).

Therein γ̃ = 0 corresponds to N = I. Based on the condition (3.5), we can analyze Y ′c within a
cone corresponding to one step of the iteration (1.8) with y(ℓ) = Y d. Then an alternative of the
estimate (3.3) with γ̃ instead of γ can be derived. We remark that the condition (3.5) is inspired
by the measure [17, (3.3)] for preconditioners of (slightly) indefinite matrices within an inexact
Rayleigh quotient iteration. The parameter γ̃ cannot simply be replaced by γ in the following
estimates. The replacement is allowed in the special case that the eigenvectors of H are invariant
with respect to N so that Y ′c, YΘ−1c and HYΘ−1c can belong to a same invariant subspace.
Indeed, γ̃ is slightly larger than γ within the numerical examples in section 4. A theoretical
description of the relation between γ̃ and γ possibly requires a generic constant for representing
the angle between Y d and YΘ−1c so that the corresponding estimates would be asymptotic.

3.2. An intermediate one-step estimate. By setting similar conditions as (3.5) for certain
subspaces which are orthogonal to zj+1, . . . , zs, an intermediate one-step estimate for the gen-
eralization of Theorem 2.6 has the following form.

Lemma 3.1. Let µ1 ≥ · · · ≥ µn be the eigenvalues of the symmetric and positive definite matrix
H ∈ R

n×n with the associated orthonormal eigenvectors z1, . . . , zn. Furthermore, let θ1 ≥ · · · ≥
θs be the Ritz values of H in the subspace span{Y } where the columns of Y are the associated
orthonormal Ritz vectors. We consider the subspace iteration Y ′ = Y − N(Y − HYΘ−1) with
Θ = diag(θ1, . . . , θs) and N ∈ R

n×n satisfying ‖I −N‖2 < 1. Then the following hold:

(a) Y ′ has full rank. Denoting by θ′1 ≥ · · · ≥ θ′s the Ritz values of H in span{Y ′}, it holds
that θ′j ≥ θj, j ∈ {1, . . . , s}. If span{Y } contains no eigenvectors, then θ′j > θj.

(b) If θs > µs+1, then there exist unique vectors yk ∈ span{Y }, y′k ∈ span{Y ′} satisfying
zTi yk = zTi y

′
k = δik for i, k ∈ {1, . . . , s}. Furthermore, the matrices Yj = [y1, . . . , yj ],

Y ′
j = [y′1, . . . , y

′
j ], j ∈ {1, . . . , s} have the rank j.

(c) Additionally, we denote by θ̃j, θ̃
′
j the smallest Ritz values in span{Yj}, span{Y ′

j }, respec-
tively. In the special case N = I, span{Y ′

j } coincides with span{HYj} so that a Ritz

vector Y ′
j cj associated with θ̃′j can be represented by HYjdj. In the general case N ≈ I,

Y ′
j cj can be regarded as a perturbation of HYjdj. If

(3.6) sin∠(HYjdj , Y
′
j cj) ≤ γ̃ sin∠(HYjdj , Yjdj)
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with γ̃ ∈ [0, 1), then it holds that

(3.7)
µj − θ̃′j

θ̃′j − µs+1

≤
(
γ̃ + (1− γ̃)

µs+1

µj

)2
µj − θ̃j

θ̃j − µs+1

.

Proof. (a) Since Y consists of s orthonormal Ritz vectors, Y has full rank. If Y ′ does not have
full rank, then there exists a nonzero vector c ∈ R

s with 0 = Y ′c = Y c−N(Y c−HYΘ−1c) so
that HYΘ−1c = (I −N)(HYΘ−1c− Y c) and

‖HYΘ−1c‖2 ≤ ‖I −N‖2‖HYΘ−1c− Y c‖2 < ‖HYΘ−1c− Y c‖2.
Therein ‖HYΘ−1c−Y c‖2 6= 0 since otherwise ‖HYΘ−1c‖2 = 0 and thus c = 0. This inequality
contradicts the fact

‖HYΘ−1c‖22 = ‖HYΘ−1c− Y c‖22 + ‖Y c‖22 ≥ ‖HYΘ−1c− Y c‖22
which follows from the orthogonality

(Y c)T (HYΘ−1c− Y c) = cTY THYΘ−1c− cTY TY c = cTΘΘ−1c− cT c = 0.

Thus Y ′ has full rank, and there are s Ritz values θ′1 ≥ · · · ≥ θ′s in span{Y ′}.
We consider further the subspaces span{Y ′Ej}, j ∈ {1, . . . , s} where Ej ∈ R

s×j consists of
the first j columns of the identity matrix Is ∈ R

s×s. Therein Y ′Ej also has full rank, and it
holds that

Y ′Ej = Y Ej −N(Y Ej −HYΘ−1Ej) = Y Ej −N(Y Ej −HY EjΘ
−1
j )

with Θj = diag(θ1, . . . , θj). We denote by y′ a Ritz vector in span{Y ′Ej} associated with the
smallest Ritz value, i.e. the j-th Ritz value in descending order because of dim(span{Y ′Ej}) = j.
Then span{Y ′Ej} ⊆ span{Y ′} and the Courant-Fischer principles yield µ(y′) ≤ θ′j . Furthermore,

y′ can be represented by y′ = Y ′Ejc with a coefficient vector c ∈ R
j\{0}, and Y ′Ejc =

Y Ejc−N(Y Ejc−HY EjΘ
−1
j c) implies

(3.8) ‖HY EjΘ
−1
j c− y′‖2 ≤ ‖I −N‖2‖HY EjΘ

−1
j c− Y Ejc‖2.

Moreover, Y Ejc is the orthogonal projection ofHY EjΘ
−1
j c to span{Y Ej}: the projection matrix

is P = (Y Ej)(Y Ej)
T according to (Y Ej)

T (Y Ej) = ET
j Y

TY Ej = ET
j Ej = Ij (identity matrix)

so that

P (HY EjΘ
−1
j c) = Y Ej

(
ET

j (Y
THY )Ej

)
Θ−1

j c = Y EjΘjΘ
−1
j c = Y Ejc.

Thus ‖HY EjΘ
−1
j c− Y Ejc‖2 is the minimum of ‖HY EjΘ

−1
j c− Y Ejd‖2 for d ∈ R

j . We denote

Y EjΘ
−1
j c by y and select d = µ(y)Θ−1

j c, then it follows from (3.8) that

(3.9) ‖Hy − y′‖2 ≤ ‖I −N‖2‖Hy − µ(y)y‖2 ≤ ‖Hy − µ(y)y‖2.
Next, ‖Hy − y′‖22 ≤ ‖Hy − µ(y)y‖22 implies

‖y′‖22 − 2(Hy)T y′ ≤ ‖µ(y)y‖22 − 2(Hy)T
(
µ(y)y

)
= −µ(y) ‖y‖2H

⇒ µ(y) ‖y′‖22 ≤ 2
(
µ(y)y

)T
Hy′ − ‖µ(y)y‖2H = ‖y′‖2H − ‖y′ − µ(y)y‖2H ≤ ‖y′‖2H

⇒ µ(y) ≤ ‖y′‖2H
‖y′‖22

= µ(y′).

Furthermore, y = Y EjΘ
−1
j c belongs to span{Y Ej}, and the columns of Y Ej are Ritz vectors

associated with θ1 ≥ · · · ≥ θj . Thus θj ≤ µ(y) ≤ µ(y′) ≤ θ′j . If span{Y } contains no eigenvectors,
then the residual Hy − µ(y)y of y ∈ span{Y Ej} ⊆ span{Y } is nonzero so that the second
inequality in (3.9) is strict. Hence ‖Hy − y′‖22 < ‖Hy − µ(y)y‖22, which implies θj ≤ µ(y) <
µ(y′) ≤ θ′j analogously.
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(b) If θs > µs+1, then also θ′s > µs+1 according to (a). This ensures that ∠(Y,Z) and ∠(Y ′, Z)
for Z = [z1, . . . , zs] are both smaller than π/2; cf. the proof of Theorem 2.6. Consequently, (b)
follows from the first part of the proof of Lemma 2.3.

(c) For N = I, we have Y ′ = HYΘ−1 so that span{Y ′} = span{HY }. Then HY can be
used as a basis matrix of span{Y ′} in order to represent the unique vectors y′k, k ∈ {1, . . . , s}
mentioned in (b). Therein (cf. the proof of Lemma 2.3)

y′k = HY g′k ⇒ ek = ZT y′k = ZTHY g′k = (HZ)TY g′k = (ZD)TY g′k = D(ZTY )g′k

with D = diag(µ1, . . . , µs). Thus

g′k = (ZTY )−1D−1ek = (ZTY )−1µ−1
k ek ⇒ y′k = µ−1

k HY (ZTY )−1ek.

Moreover, yk has the representation Y (ZTY )−1ek so that y′k = µ−1
k Hyk. Correspondingly, it

holds that

span{Y ′
j } = span{y′1, . . . , y′j} = span{µ−1

1 Hy1, . . . , µ
−1
j Hyj} = span{HYj}.

Then Y ′
j cj belongs to span{HYj} and has the representation HYjdj .

For N ≈ I, the assumption (3.6) means that Y ′
j cj is contained in a cone around the axis

span{HYjdj}. By considering a sphere centred at a point on the axis and tangent to the cone,
the inequality

(3.10) ‖Hy − y′‖2 ≤ γ̃‖Hy − µ(y)y‖2

holds for some y, y′ which are collinear to Yjdj , Y
′
j cj , respectively. By construction, span{Yj}

and span{Y ′
j } are orthogonal to the eigenvectors zj+1, . . . , zs. Thus the further analysis can be

restricted to the orthogonal complement of span{zj+1, . . . , zs}. Therein it can be shown that
two auxiliary vectors ỹ, ỹ ′ exist in a two-dimensional invariant subspace and satisfy

µ(ỹ) = µ(y), µ(ỹ ′) ≤ µ(y′), sin∠(Hỹ, ỹ ′) = γ̃ sin∠(Hỹ, ỹ),

analogously to [1, Lemma 4.1]. Next, the mini-dimensional analysis in [1, Lemma 4.2] is appli-
cable and implies µ(ỹ ′) ≥ µ(ỹ). More precisely, it holds that

(3.11)

(
µk1

− µ(ỹ ′)

µ(ỹ ′)− µk2

)(
µk1

− µ(ỹ)

µ(ỹ)− µk2

)−1

≤
(
γ̃ + (1− γ̃)

µk2

µk1

)2

with the eigenvalues µk2
< µk1

corresponding to the invariant subspace. Furthermore, y′ is

collinear to Y ′
j cj so that µ(y′) coincides with the Ritz value θ̃′j . Then µ(y′) = θ̃′j ≤ µj by using

the Courant-Fischer principles. The estimate (3.7) holds trivially if θ̃′j = µj . In the nontrivial

case θ̃′j < µj , we sum up the known relations

(3.12) µk2
≤ µs+1 < θs ≤ θ̃j ≤ µ(y) = µ(ỹ) ≤ µ(ỹ ′) ≤ µ(y′) = θ̃′j < µj ≤ µk1

where the first and the last inequalities are based on the fact that µj and µs+1 are neighboring
eigenvalues in the restricted analysis. Combining this with monotonicity arguments extends
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(3.11) to
(

µj − θ̃′j

θ̃′j − µs+1

)(
µj − θ̃j

θ̃j − µs+1

)−1

≤
(

µj − µ(ỹ ′)

µ(ỹ ′)− µs+1

)(
µj − µ(ỹ)

µ(ỹ)− µs+1

)−1

=

(
µj − µ(ỹ ′)

µj − µ(ỹ)

)(
µ(ỹ)− µs+1

µ(ỹ ′)− µs+1

)
≤
(

µk1
− µ(ỹ ′)

µk1
− µ(ỹ)

)(
µ(ỹ)− µk2

µ(ỹ ′)− µk2

)

=

(
µk1

− µ(ỹ ′)

µ(ỹ ′)− µk2

)(
µk1

− µ(ỹ)

µ(ỹ)− µk2

)−1

(3.11)

≤
(
γ̃ + (1− γ̃)

µk2

µk1

)2

≤
(
γ̃ + (1− γ̃)

µs+1

µj

)2

and yields (3.7). �

3.3. Multistep estimates. The intermediate estimate (3.7) can easily be extended to a one-
step estimate concerning the Ritz values in the subspace iterates span{Y }, span{Y ′}. However,
the Ritz value in the extended bound is not the j-th Ritz value in descending order but the
smallest Ritz value. Thus the bound is somewhat loose. Instead, a multistep extension is much
more meaningful.

Theorem 3.2. Let µ1 ≥ · · · ≥ µn be the eigenvalues of the symmetric and positive definite
matrix H ∈ R

n×n with the associated orthonormal eigenvectors z1, . . . , zn. We consider the
subspace iteration (1.9) with dim(span{Y (0)}) = s and ‖I −N‖2 < 1. Then the following hold:

(a) Each span{Y (ℓ)} has the dimension s. Denoting by θ
(ℓ)
1 ≥ · · · ≥ θ

(ℓ)
s the Ritz values of

H in span{Y (ℓ)}, it holds that θ
(ℓ+1)
j ≥ θ

(ℓ)
j , j ∈ {1, . . . , s}. If span{Y (ℓ)} contains no

eigenvectors, then θ
(ℓ+1)
j > θ

(ℓ)
j .

(b) If θ
(0)
s > µs+1, then each span{Y (ℓ)} contains unique vectors y

(ℓ)
k satisfying zTi y

(ℓ)
k = δik

for i, k ∈ {1, . . . , s}. Furthermore, the matrix Y
(ℓ)
j = [y

(ℓ)
1 , . . . , y

(ℓ)
j ], j ∈ {1, . . . , s} has

the rank j.

(c) Additionally, we denote by Y
(ℓ+1)
j c(ℓ) a Ritz vector in span{Y (ℓ+1)

j } associated with

the smallest Ritz value. In the special case N = I, span{Y (ℓ+1)
j } coincides with

span{HY
(ℓ)
j } so that the vector Y

(ℓ+1)
j c(ℓ) can be represented by HY

(ℓ)
j d(ℓ). In the general

case N ≈ I, Y
(ℓ+1)
j c(ℓ) can be regarded as a perturbation of HY

(ℓ)
j d(ℓ). If

sin∠
(
HY

(ℓ)
j d(ℓ), Y

(ℓ+1)
j c(ℓ)

)
≤ γ̃ sin∠

(
HY

(ℓ)
j d(ℓ), Y

(ℓ)
j d(ℓ)

)

with γ̃ ∈ [0, 1) for each ℓ < L, then it holds that

(3.13)
µj − θ

(L)
j

θ
(L)
j − µs+1

≤
(
γ̃ + (1− γ̃)

µs+1

µj

)2L
µj − θ

(0)
s

θ
(0)
s − µs+1

.

Proof. (a) and (b) follow trivially from the corresponding parts of Lemma 3.1. For (c), we denote

by θ̃
(ℓ)
j the smallest Ritz value in span{Y (ℓ)

j } for each ℓ. Then recursively applying the estimate

(3.7) from Lemma 3.1 implies

µj − θ̃
(L)
j

θ̃
(L)
j − µs+1

≤
(
γ̃ + (1− γ̃)

µs+1

µj

)2L µj − θ̃
(0)
j

θ̃
(0)
j − µs+1

.

Combining this with θ
(L)
j ≥ θ̃

(L)
j and θ̃

(0)
j ≥ θ

(0)
s (based on span{Y (ℓ)

j } ⊆ span{Y (ℓ)} for each ℓ

and the Courant-Fischer principles) yields (3.13). �
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Analogously to Theorem 2.8, a multistep estimate for arbitrarily located θ
(0)
s can also be

derived. Therein we construct auxiliary subspaces by subspace intersections and apply some
arguments from the proof of Lemma 3.1.

Theorem 3.3. Let µ1 ≥ · · · ≥ µn be the eigenvalues of the symmetric and positive definite
matrix H ∈ R

n×n with the associated orthonormal eigenvectors z1, . . . , zn. We consider the
subspace iteration (1.9) with dim(span{Y (0)}) = s and ‖I − N‖2 < 1, and denote (according

to (a) from Theorem 3.2) by θ
(ℓ)
1 ≥ · · · ≥ θ

(ℓ)
s the Ritz values of H in span{Y (ℓ)}. Let Y(ℓ)

j

be the intersection span{Y (ℓ)} ∩ span{z1, . . . , zi−s+j , zi+1, . . . , zn} for j ∈ {1, . . . , s} and i ∈
{s, . . . , n − 1}. Then each Y(ℓ)

j has at least the dimension j. Additionally, we denote by y
(ℓ)
j a

Ritz vector in Y(ℓ)
j associated with the smallest Ritz value. In the special case N = I, Y(ℓ+1)

j

coincides with HY(ℓ)
j so that y

(ℓ+1)
j can be represented by Hy with a certain y ∈ Y(ℓ)

j \{0}. In

the general case N ≈ I, y
(ℓ+1)
j can be regarded as a perturbation of Hy. If µi ≥ θ

(0)
s > µi+1 and

sin∠
(
Hy, y

(ℓ+1)
j

)
≤ γ̃ sin∠

(
Hy, y

)

with γ̃ ∈ [0, 1) for each y
(ℓ+1)
j , ℓ < L and the corresponding y, then it holds that

(3.14)
µi−s+j − θ

(L)
j

θ
(L)
j − µi+1

≤
(
γ̃ + (1− γ̃)

µi+1

µi−s+j

)2L
µi−s+j − θ

(0)
s

θ
(0)
s − µi+1

.

Proof. According to (a) from Theorem 3.2, each span{Y (ℓ)} has the dimension s. Analogously

to (2.13), a dimension comparison shows that each Y(ℓ)
j has at least the dimension j. For N = I,

we have span{Y (ℓ+1)} = span{HY (ℓ)} = H span{Y (ℓ)} so that

Y(ℓ+1)
j = span{Y (ℓ+1)} ∩ span{z1, . . . , zi−s+j , zi+1, . . . , zn}

=
(
H span{Y (ℓ)}

)
∩
(
H span{z1, . . . , zi−s+j , zi+1, . . . , zn}

)
= HY(ℓ)

j

and there exists a y ∈ Y(ℓ)
j \{0} with y

(ℓ+1)
j = Hy. For N ≈ I, the estimate (3.14) holds trivially

if θ
(L)
j ≥ µi−s+j . In the nontrivial case θ

(L)
j < µi−s+j , we have θ

(ℓ+1)
j < µi−s+j for ℓ < L since

the sequence (θ
(ℓ)
j )ℓ∈N is nondecreasing according to (a) from Theorem 3.2. The smallest Ritz

value in Y(ℓ+1)
j , i.e. µ(y

(ℓ+1)
j ), is not larger than the j-th Ritz value (in descending order) in

Y(ℓ+1)
j because of dimY(ℓ+1)

j ≥ j. Then µ(y
(ℓ+1)
j ) ≤ θ

(ℓ+1)
j by using Y(ℓ+1)

j ⊆ span{Y (ℓ+1)} and

the Courant-Fischer principles. Furthermore, the arguments (for N ≈ I) in the part (c) of the
proof of Lemma 3.1 are applicable after slight reformulation. In particular, the sine assumption
formally leads to (3.10) and (3.11), and the relations in (3.12) correspond to

µk2
≤ µi+1 < θ(0)s ≤ µ(y

(ℓ)
j ) ≤ µ(y) = µ(ỹ)

≤ µ(ỹ ′) ≤ µ(y′) = µ(y
(ℓ+1)
j ) < µi−s+j ≤ µk1

.

Subsequently, an extension of (3.11) implies
(

µi−s+j − µ(y
(ℓ+1)
j )

µ(y
(ℓ+1)
j )− µi+1

)
≤
(
γ̃ + (1− γ̃)

µi+1

µi−s+j

)2
(

µi−s+j − µ(y
(ℓ)
j )

µ(y
(ℓ)
j )− µi+1

)

and further (
µi−s+j − µ(y

(L)
j )

µ(y
(L)
j )− µi+1

)
≤
(
γ̃ + (1− γ̃)

µi+1

µi−s+j

)2L
(

µi−s+j − µ(y
(0)
j )

µ(y
(0)
j )− µi+1

)
.

Combining this with θ
(L)
j ≥ µ(y

(L)
j ) and µ(y

(0)
j ) ≥ θ

(0)
s yields (3.14). �
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Remark 3.4. The parts (b) and (c) of Theorem 3.2 can be included in Theorem 3.3 as a special

case, because the intersection Y(ℓ)
j in the case i = s, i.e.

Y(ℓ)
j = span{Y (ℓ)} ∩ span{z1, . . . , zj , zs+1, . . . , zn},

coincides with the subspace span{Y (ℓ)
j } ⊆ span{Y (ℓ)} from Theorem 3.2. This can be proved as

follows: By definition, the orthogonality between span{Y (ℓ)
j } and span{zj+1, . . . , zs} holds and

implies span{Y (ℓ)
j } ⊆ span{z1, . . . , zj , zs+1, . . . , zn} so that span{Y (ℓ)

j } ⊆ Y(ℓ)
j . Furthermore,

for i = s, the assumption on θ
(0)
s reads µs ≥ θ

(0)
s > µs+1. Then θ

(ℓ)
s > µs+1 for each ℓ since

the sequence (θ
(ℓ)
s )ℓ∈N is nondecreasing according to (a) from Theorem 3.2. Consequently, the

dimension of Y(ℓ)
j cannot exceed j, since otherwise the smallest Ritz value of H in Y(ℓ)

j can be

interpreted as the k-th Ritz value θ̃k in descending order with k ≥ j+1. Since Y(ℓ)
j is a subset of

the invariant subspace span{z1, . . . , zj , zs+1, . . . , zn}, the Courant-Fischer principles imply the

relation µs+(k−j) ≥ θ̃k so that θ
(ℓ)
s > µs+1 ≥ µs+(k−j) ≥ θ̃k. This contradicts θ

(ℓ)
s ≤ θ̃k which is

based on the fact that θ
(ℓ)
s is the smallest Ritz value of H in span{Y (ℓ)} and Y(ℓ)

j ⊆ span{Y (ℓ)}.
Thus dim(Y(ℓ)

j ) ≤ j, and j = dim(span{Y (ℓ)
j }) ≤ dim(Y(ℓ)

j ) ≤ j because of span{Y (ℓ)
j } ⊆ Y(ℓ)

j .

Then the dimension inequalities turn into equalities so that span{Y (ℓ)
j } and Y(ℓ)

j coincide.

3.4. Multistep estimates with respect to Ax = λMx. We reformulate the new multistep
estimates from Theorems 3.2, 3.3 for the generalized eigenvalue problem Ax = λMx. Therein we
merge Theorem 3.3 with only the part (a) of Theorem 3.2, since the other two parts correspond
to a special case of Theorem 3.3.

Theorem 3.5. Let λ1 ≤ · · · ≤ λn be the eigenvalues of the pair (A,M) of symmetric and positive
definite matrices A,M ∈ R

n×n with the associated A-orthonormal eigenvectors v1, . . . , vn. We
consider the preconditioned inverse subspace iteration (1.4) with dim(span{X(0)}) = s and ‖I −
TA‖A < 1. Then the following hold:

(a) Each span{X(ℓ)} has the dimension s. Denoting by ϑ
(ℓ)
1 ≤ · · · ≤ ϑ

(ℓ)
s the Ritz values of

(A,M) in span{X(ℓ)}, it holds that ϑ(ℓ+1)
j ≤ ϑ

(ℓ)
j , j ∈ {1, . . . , s}. If span{X(ℓ)} contains

no eigenvectors, then ϑ
(ℓ+1)
j < ϑ

(ℓ)
j .

(b) Let X (ℓ)
j be the intersection span{X(ℓ)} ∩ span{v1, . . . , vi−s+j , vi+1, . . . , vn} for j ∈

{1, . . . , s} and i ∈ {s, . . . , n − 1}. Then each X (ℓ)
j has at least the dimension j. Ad-

ditionally, we denote by x
(ℓ)
j a Ritz vector in X (ℓ)

j associated with the largest Ritz value.

In the special case T = A−1, X (ℓ+1)
j coincides with A−1MX (ℓ)

j so that x
(ℓ+1)
j can be

represented by A−1Mx with a certain x ∈ X (ℓ)
j \{0}. In the general case T ≈ A−1,

x
(ℓ+1)
j can be regarded as a perturbation of A−1Mx. If λi ≤ ϑ

(0)
s < λi+1 and

sin∠A

(
A−1Mx, x

(ℓ+1)
j

)
≤ γ̃ sin∠A

(
A−1Mx, x

)

with γ̃ ∈ [0, 1) for each x
(ℓ+1)
j , ℓ < L and the corresponding x, then it holds that

(3.15)
ϑ
(L)
j − λi−s+j

λi+1 − ϑ
(L)
j

≤
(
γ̃ + (1− γ̃)

λi−s+j

λi+1

)2L
ϑ
(0)
s − λi−s+j

λi+1 − ϑ
(0)
s

.

In addition, the estimates in Theorem 3.5 can be applied to the accelerated versions of the pre-
conditioned inverse subspace iteration (1.4) such as the block preconditioned steepest descent it-
eration [15] and the locally optimal block preconditioned conjugate gradient method (LOBPCG)
[8]. We note that the estimate (3.15) is only sharp in the case j = s where it coincides with a
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sharp estimate from [11] for the preconditioned inverse subspace iteration. Nevertheless, (3.15)
serves as a cluster robust supplement to the known estimates. It is still improvable concerning
sharpness and extendable for advanced methods.

4. Numerical Experiments

We demonstrate the benefit of the new results by three numerical experiments. In Experiment
I, we consider the block power method for a simple standard eigenvalue problem and compare
the new estimate (2.12) with the known estimates (1.11) and (2.2). In Experiments II and III,
the preconditioned inverse subspace iteration is tested within the AMPEigensolver software [21].
Two generalized eigenvalue problems are derived from the finite element discretization of the
Laplacian eigenvalue problem and used for the comparison of the new estimate (3.15) with the
known estimate (1.5).

Experiment I. We use the diagonal matrix H = diag(µ1, . . . , µ6000) with six clustered eigenval-
ues close to 10 and 5994 equidistant eigenvalues in the interval [1, 9], namely, µi = 10+(7−i)/100
for i ∈ {1, . . . , 6} and µi = 9 − 8(i − 7)/5993 for i ∈ {7, . . . , 6000}. The block power method
span{Y (ℓ+1)} = span{HY (ℓ)} is implemented for 1000 random initial subspaces span{Y (0)}
of dimension s = 6. We document the Ritz values θ

(ℓ)
1 ≥ · · · ≥ θ

(ℓ)
6 of each span{Y (ℓ)},

ℓ ∈ {0, . . . , 156}. The numerical maxima of the distances µj − θ
(ℓ)
j , j ∈ {1, . . . , 6} (over the

1000 samples) are illustrated by solid curves in Figure 1. Subsequently, we determine a lower

bound of θ
(ℓ)
j by using the estimate (2.12). Therein θ

(0)
s and the index will be implicitly updated

if the current smallest Ritz value leaves the interval (µi+1, µi]. The numerical maxima of the
distance between µj and this lower bound are plotted by bold curves. Similarly, we compute the
numerical maxima of distances corresponding to the multistep form

(4.1)
µi − θ

(ℓ)
j

θ
(ℓ)
j − µi+1

≤
(
µi+1

µi

)2ℓ µi − θ
(0)
j

θ
(0)
j − µi+1

of the classical sharp estimate (1.11) (for γ = 0) and the classical cluster robust estimate (2.2)
(special form of [7, (2.20)]). These are displayed by dashed and dotted curves, respectively.
Since the first six eigenvalues build a cluster, the convergence factor µi+1/µi from (4.1) is close
to 1 in the final phase of the approximation of the first five eigenvalues. Thus the resulting
dashed curves cannot reflect the cluster robustness. Each of (2.2) and (2.12) does not suffer this
drawback, as the convergence factors µs+1/µj and µi+1/µi−s+j are sufficiently small in spite
of the eigenvalue cluster. Furthermore, (2.12) provides a tighter bound. The overestimation of
(2.2) might be caused by the extension of the intermediate estimate (2.3) in the derivation and
by the possibly large tangent values similarly to the numerical example in [16, Section 2.1] for
a Krylov subspace iteration. For j = 6, (4.1) coincides with (2.12) so that the dashed curve is
covered by the bold curve. We also note that the actual convergence rates for approximating
clustered eigenvalues are not always monotone with respect to the indices. In this experiment,
the corresponding number of the required steps is minimal at j = 3 instead of j = 1.

Experiment II. We consider a generalized eigenvalue problem Ax = λMx derived from an
adaptive finite element discretization of the Laplacian eigenvalue problem introduced in Appen-
dix I. We select the matrices from the 62nd grid with 1,567,785 degrees of freedom, and compare
the estimates (3.15) and (1.5). Similarly to Experiment I, we implement the preconditioned in-
verse subspace iteration (1.4) for 1000 random initial subspaces span{X(0)} of dimension s = 6.
In contrast to the multigrid preconditioning used for solving matrix eigenvalue problems on a
series of grids with up to 22,201,036 degrees of freedom during the adaptive finite element dis-
cretization, the preconditioning for the selected moderate-sized test problem is generated by the
incomplete Cholesky factorization C = ichol(A,struct(’type’,’ict’,’droptol’,1e-6)) in
Matlab. This allows us to utilize a unique preconditioner for the 1000 tests. More precisely, the
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Figure 1. Comparison between the estimates (2.12), (4.1) and (2.2). Solid curves:

numerical maxima of the distances µj − θ
(ℓ)
j over 1000 random initial subspaces. Bold

curves: bounds based on (2.12). Dashed curves: bounds based on (4.1). Dotted curves:
bounds based on (2.2).

product B = CCT yields an approximate of A and satisfies the traditional condition

α(xTBx) ≤ xTAx ≤ β(xTBx) ∀ x ∈ R
n

with α ≈ 0.40 and β ≈ 1.01. The preconditioner T is then defined by
(
2/(β + α)

)
B−1 (but

implemented by solving linear systems of matrices C, CT ) and satisfies the condition ‖I−TA‖A ≤
γ with γ = (β − α)/(β + α) ≈ 0.43. The Ritz values ϑ

(ℓ)
1 ≤ · · · ≤ ϑ

(ℓ)
6 of span{X(ℓ)} are

documented for ℓ ∈ {0, . . . , 60}. In Figure 2, we draw first the numerical maxima of the distances

ϑ
(ℓ)
j − λj , j ∈ {1, . . . , 6} by solid curves. Subsequently, two upper bounds of ϑ

(ℓ)
j are computed

by using (3.15) and (1.5). Therein we rewrite the index L in (3.15) as ℓ so that (3.15) can easily
be compared with the multistep form

(4.2)
ϑ
(ℓ)
j − λi

λi+1 − ϑ
(ℓ)
j

≤
(
γ + (1− γ)

λi

λi+1

)2ℓ ϑ
(0)
j − λi

λi+1 − ϑ
(0)
j

of (1.5). The quality parameter γ̃ ≈ 0.46 required for (3.15) is determined by maximizing the

sine quotient sin∠A

(
A−1Mx, x

(ℓ+1)
j

)
/ sin∠A

(
A−1Mx, x

)
for the auxiliary vectors introduced in

Theorem 3.5 over the computed iterates. Analogously, we can determine the quality parameter
γ ≈ 0.43 for (4.2) by maximizing the quotient ‖w̃j‖A/‖wj‖A for the j-th column w̃j of (X(ℓ) −
TR(ℓ)) − A−1MX(ℓ)Θ̂(ℓ) and the j-th column wj of X(ℓ) − A−1MX(ℓ)Θ̂(ℓ) according to (1.4)
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and the relation

(X(ℓ) − TR(ℓ))−A−1MX(ℓ)Θ̂(ℓ) = (I − TA)
(
X(ℓ) −A−1MX(ℓ)Θ̂(ℓ)

)
.

For (3.15), an implicit update of ϑ
(0)
s and the index is made if the current largest Ritz value

leaves the interval [λi, λi+1). The numerical maxima of the distances between λj and each of the
upper bounds by (3.15) and (4.2) are plotted by bold and dashed curves. For j ∈ {1, . . . , 5}, the
bold curves give looser bounds than the dashed curves in the first several steps since the s-th

Ritz value ϑ
(0)
s is used, but they are much steeper because of λi−s+j/λi+1 < λi/λi+1 so that

the bounds are tighter in total. Nevertheless, the dashed curves are clearly decreasing, since the
smallest eigenvalues are well separated:

λ1 ≈ 8.895089, λ2 ≈ 13.77993, λ3 ≈ 21.63029, λ4 ≈ 25.08266,

λ5 ≈ 29.64299, λ6 ≈ 35.76182, λ7 ≈ 44.90599, λ8 ≈ 47.47379,

and the convergence factor in (4.2) is thus not close to 1. For j = 6, (3.15) and (4.2) have the
same form except for the difference between γ̃ and γ. Therefore the dashed curve is slightly
better because of γ < γ̃. Moreover, the observed actual convergence rates are monotone with
respect to the indices. This corresponds to the strict monotonicity of the convergence factors
λi−s+j/λi+1 since the relevant eigenvalues are well separated. In contrast to this, the weaker
monotonicity caused by clustered eigenvalues in Experiment I can be disturbed by numerical
errors.
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Figure 2. Comparison between the estimates (3.15) and (4.2) in Experiment II.

Solid curves: numerical maxima of the distances ϑ
(ℓ)
j − λj over 1000 random initial

subspaces. Bold curves: bounds based on (3.15). Dashed curves: bounds based on

(4.2).
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Experiment III. We consider a generalized eigenvalue problem Ax = λMx with clustered
eigenvalues from Appendix II. We use the matrices from the 36th grid with 1,509,276 degrees of
freedom for the comparison of the new estimate (3.15) with the multistep form (4.2) of the known
estimate (1.5). The preconditioned inverse subspace iteration (1.4) is implemented for 1000 ran-
dom initial subspaces span{X(0)} of dimension s = 9. The preconditioner for A is generated
by C = ichol(A,struct(’type’,’ict’,’droptol’,3e-6)) in Matlab. The resulting approxi-
mate B = CCT satisfies the traditional condition α(xTBx) ≤ xTAx ≤ β(xTBx) ∀ x ∈ R

n with
α ≈ 0.41 and β ≈ 1.27, whereas the preconditioner T =

(
2/(β+α)

)
B−1 satisfies ‖I−TA‖A ≤ γ

with the quality parameter γ = (β − α)/(β + α) ≈ 0.51 for (4.2). Moreover, the quality pa-
rameter for (3.15) has the value γ̃ ≈ 0.53. In Figure 3, the numerical maxima of the distances

ϑ
(ℓ)
j − λj , j ∈ {1, . . . , 9} between Ritz values and eigenvalues are displayed by solid curves. Ad-

ditionally, two upper bounds for ϑ
(ℓ)
j are determined by (3.15) and (4.2). Their distances to λj

are illustrated by bold and dashed curves. Since the nine smallest eigenvalues build two clusters,
namely,

λ1, λ2, λ3 ∈ (2.559876, 2.559941), λ4, . . . , λ9 ∈ (6.495853, 6.500676)

(whereas λ10 ≈ 11.62294), the convergence factor in (4.2) is close to 1 for i = j and j ∈
{1, 2} ∪ {4, . . . , 8} so that the dashed curves turn into nearly horizontal lines in the final phase
and cannot predict the actual convergence. In contrast to this, (3.15) and the bold curves reflect
the convergence behavior correctly. For j ∈ {3, 9}, the dashed curves are appropriate because
the two relevant eigenvalues in (4.2) belong to different clusters so that the convergence factor is
bounded away from 1. The bold curves are slightly looser because of γ̃ > γ. On the whole, the
estimate (3.15) is suitable for interpreting the cluster robustness of the preconditioned inverse
subspace iteration.

5. Conclusion

The block implementation of gradient-type eigensolvers allows the simultaneous approxima-
tion of eigenpairs and prevents convergence deteriorations in the case of clustered eigenvalues.
The cluster robustness can be explained by using an accompanying sequence of vectors which
are orthogonal to the eigenspaces associated with certain interior eigenvalues. Typical examples
are the classical estimates of the block power method [20] and the abstract block iteration [7].
Therein the orthogonality to the interior eigenspaces enables one to restrict the convergence
analysis to a subspace in order to skip the most of the clustered eigenvalues. However, it is
difficult to generalize these estimates directly to the corresponding preconditioned eigensolvers
because the preconditioning disturbs the orthogonality.

In the present paper, we combine the above orthogonal splitting with the geometric interpre-
tation of preconditioning from [10, 1]. This results in cluster robust estimates for the precon-
ditioned inverse subspace iteration. In the special case with exact preconditioning, a reciprocal
representation of this iteration corresponds to the block power method. Therein we provide
a new estimate in terms of Ritz values which improves an estimate from [7] with angle-type
bounds. In the general case with inexact preconditioning, we use an assumption concerning
perturbations of Ritz vectors from the special case. Then the resulting intermediate estimate in
terms of Ritz values is applied recursively and leads to a cluster robust estimate. In comparison
to the previous cluster robust estimates from [3, 18], our estimate has a weaker assumption and
a simpler form. Its benefit compared to the one-step sharp estimate from [11] can easily be
demonstrated by numerical experiments. Although the new results are also applicable to further
preconditioned gradient-type eigensolvers, it seems possible and interesting to derive individual
and more accurate estimates for each eigensolver in future work.
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Figure 3. Comparison between the estimates (3.15) and (4.2) in Experiment III.

Solid curves: numerical maxima of the distances ϑ
(ℓ)
j − λj over 1000 random initial

subspaces. Bold curves: bounds based on (3.15). Dashed curves: bounds based on

(4.2).
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Appendix: Laplacian eigenvalue problem

I. For Experiment II in section 4, we consider the Laplacian eigenvalue problem −∆u = λu
on a 2D mushroom-shaped domain shown in Figure 4. The boundary Γ1 ∪ Γ2 ∪ Γ3 is defined by

Γ1 =
{(

cos(t)+ 1
3 cos(3t), sin(t)+

1
4 sin(4t)

)T
; t ∈ [0, 2π)

}
,

Γ2 =
{(

4
3 (1− t), 0

)T
; t ∈ (0, 1]

}
, Γ3 =

{(
4
3 t, 0

)T
; t ∈ (0, 1)

}

where Γ2 and Γ3 correspond to the two sides of a slit along the horizontal axis. We set homo-
geneous Dirichlet boundary conditions on Γ1 ∪ Γ2 and homogeneous Neumann boundary con-
ditions on Γ3. We combine an adaptive finite element discretization and the LOBPCG method
[8] within the AMPEigensolver software [21]. The initial grid leads to a matrix eigenvalue prob-
lem Ax = λMx of dimension 5 which can easily be solved by matrix transformations. For the
matrix pairs (A,M) from further grids, we compute the three smallest eigenvalues by using the
LOBPCG method with the block size 3. In addition, the residual-based error estimator from [12]
is applied to the computed eigenfunction approximations associated with the smallest eigenvalue
in order to control the adaptive grid refinement. Since the corresponding eigenfunction has an
unbounded derivative at the origin, the refinement depths increase rapidly near the origin; see
Figure 4. Moreover, the preconditioners for the matrix eigenvalue problem are generated by

multigrid iterations with the adaptively refined grids. The smallest matrix eigenvalues λ
(A,M)
1

from six grids are listed in Table 1.

Γ1

Γ2

Γ3

Figure 4. Model problem for Experiment II in section 4. Left: the 2D domain
for the Laplacian eigenvalue problem −∆u = λu and its boundary in three parts.
Center: the 23rd grid from the adaptive grid refinement. Right: the contour lines of
an eigenfunction associated with the smallest eigenvalue.

Table 1. The smallest matrix eigenvalues λ
(A,M)
1 of the model problem for Exper-

iment II in section 4 computed by using LOBPCG within AMPEigensolver. These

converge to the smallest operator eigenvalue λ
(−∆)
1 ≈ 8.895049.

level 1 23 36 51 62 78
nodes 27 3810 31504 390322 1572517 17712651
d.o.f. 5 3582 30838 387963 1567785 17696832

λ
(A,M)
1 12.33746 8.913402 8.897231 8.895217 8.895089 8.895050

II. For Experiment III in section 4, we need a model problem with clustered eigenvalues.
For this purpose, we connect three circle domains by a thin annulus; see Figure 5. The circles
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have the same radius r = 1.5 and are centred at (−
√
3,−1)T , (

√
3,−1)T , (0, 2)T , respectively.

The annulus is centred at the origin with the radii r1 = 1.2, r2 = 1.5. We consider again
the Laplacian eigenvalue problem −∆u = λu and set only homogeneous Dirichlet boundary
conditions. Similarly to Appendix I, the AMPEigensolver derives a sequence of matrix eigenvalue
problems on 63 adaptively refined grids. The refinement is based on the residuals of the computed
eigenfunction approximations associated with the three smallest eigenvalues. The eigenfunctions
are partially similar to the well-known peak eigenfunction on the unit circle.

Figure 5. Model problem for Experiment III in section 4. Top left: the 2D domain
for the Laplacian eigenvalue problem −∆u = λu. Top right: the 12th grid from
the adaptive grid refinement. Bottom: three eigenfunctions associated with the three
smallest eigenvalues.
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